1. Aoki, H., Ibukiyama, T.: Simple graded rings of Siegel modular forms, differential operators and Borcherds products. Int. J. Math. 16(3), 249–279 (2005)
2. Aspinwall, P.S.: $$K3$$ surfaces and string duality. Fields. strings and duality (Boulder, CO, 1996), pp. 421–540. World Sci. Publ, River Edge (1997)
3. Aspinwall, P.S.: D-branes on Calabi-Yau manifolds. In: Progress in string theory, pp. 1–152. World Sci. Publ., Hackensack (2005)
4. Aspinwall, P.S., Morrison, D.R.: String theory on $$K3$$ surfaces. In: Mirror symmetry, II, vol. 1 of AMS/IP Stud. Adv. Math., pp. 703–716. American Mathematical Society, Providence (1997)
5. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, vol. 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2nd edn. Springer, Berlin (2004)