Lahar risk assessment from source identification to potential impact analysis: the case of Vulcano Island, Italy

Author:

Gattuso AlessandroORCID,Bonadonna CostanzaORCID,Frischknecht CorineORCID,Cuomo Sabatino,Baumann Valérie,Pistolesi Marco,Biass SebastienORCID,Arrowsmith J. Ramon,Moscariello Mariagiovanna,Rosi Mauro

Abstract

AbstractLahars are rapid flows composed of water and volcaniclastic sediments, which have the potential to impact residential buildings and critical infrastructure as well as to disrupt critical services, especially in the absence of hazard-based land-use planning. Their destructive power is mostly associated with their velocity (related to internal flow properties and topographic interactions) and to their ability to bury buildings and structures (due to deposit thickness). The distance reached by lahars depends on their volume, on sediments/water ratio, as well as on the geometrical properties of the topography where they propagate. Here we present the assessment of risk associated with lahar using Vulcano island (Italy) as a case study. First, we estimated an initial lahar source volume considering the remobilisation by intense rain events of the tephra fallout on the slopes of the La Fossa cone (the active system on the island), where the tephra fallout is associated with the most likely scenario (e.g. long-lasting Vulcanian cycle). Second, we modelled and identified the potential syn-eruptive lahar impact areas on the northern sector of Vulcano, where residential and touristic facilities are located. We tested a range of parameters (e.g., entrainment capability, consolidation of tephra fallout deposit, friction angle) that can influence lahar propagation output both in terms of intensity of the event and extent of the inundation area. Finally, exposure and vulnerability surveys were carried out in order to compile exposure and risk maps for lahar-flow front velocity (semi-quantitative indicator-based risk assessment) and final lahar-deposit thickness (qualitative exposure-based risk assessment). Main outcomes show that the syn-eruptive lahar scenario with medium entrainment capability produces the highest impact associated with building burial by the final lahar deposit. Nonetheless, the syn-eruptive lahar scenario with low entrainment capacity is associated with higher runout and results in the highest impact associated with lahar-flow velocities. Based on our simulations, two critical infrastructures (telecommunication and power plant), as well as the main road crossing the island are exposed to potential lahar impacts (either due to lahar-flow velocity or lahar-deposit thickness or both). These results show that a risk-based spatial planning of the island could represent a valuable strategy to reduce the volcanic risk in the long term.

Funder

Measuring and Modelling of Volcano Eruption Dynamics (MeMoVolc) ESF Network

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Safety Research,Geophysics

Reference74 articles.

1. Akbas SO, Blahut J, Sterlacchini S (2009) Critical assessment of existing physical vulnerability estimation approaches for debris flows. In: Malet J, Remaître A, Bogaard T (eds) Landslide processes: from geomorphological mapping to dynamic modelling. CERG Editions, Strasbourg, pp 229–233

2. Baum RL, Savage WZ, Godt JW (2002) TRIGRS – a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis US geological survey open-file report, vol 424, p 38

3. Baumann V, Bonadonna C, Cuomo S, Moscariello M, Biass S, Pistolesi M (2019) Gattuso A (2019) Mapping the susceptibility of rain-triggered lahars at Vulcano island (Italy) combining field characterization and numerical modelling. Nat Hazards Earth Syst Sci 19:2421–2449. https://doi.org/10.5194/nhess-19-2421-2019

4. Baxter PJ, Boyle R, Cole P, Neri A, Spence RJS, Zuccaro G (2005) The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills, Montserrat. Bull Volcanol 67:292–313

5. Biass S, Bonadonna C, Di Traglia F, Pistolesi M, Rosi M, Lestuzzi P (2016) Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy. Bull Volcanol 78:37. https://doi.org/10.1007/s00445-016-1028-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3