Contamination of equipment in emergency settings: An exploratory study with a targeted automated intervention

Author:

Obasi Chidi,Agwu Allison,Akinpelu Wale,Hammons Roger,Clark Clyde,Etienne-cummings Ralph,Hill Peter,Rothman Richard,Babalola Stella,Ross Tracy,Carroll Karen,Asiyanbola Bolanle

Abstract

Abstract Background Despite standard manual decontamination, hospital equipment remains contaminated with microorganisms, contributing to nosocomial transmission and hospital acquired infections. This has the potential to negate the effects of healthcare workers' hand-washing protocols. In order to decrease the likihood of equipment contamination, there has been a rise in the use of disposable pieces of equipment, especially non-critical disposables. However, these carry a significant cost, both a direct financial cost (running into billions of dollars), as well as a cost to the environment. This is important because we hope to contain the cost of healthcare, one way to do that, is to look to the hospitals themselves, for innovative solutions that maintain the standard of care. Objective To develop and evaluate the effectiveness of an simple decontamination device for use with portable hospital equipment, by comparing rates of residual contamination after use of the novel device versus those seen with standard manual decontamination methods. Methods The Self-cleaning Unit for the Decontamination of Small instruments (SUDS) is a user-friendly, automated instrument developed via multi-disciplinary collaboration for decontamination in the clinical area. Pre- and post- utilization of portable medical equipment in an emergency department (ED) setting were cultured. To evaluate durability of the decrease in antimicrobial contamination, objects were re-cultured 48 hours after SUDS cleaning and following re-introduction into the clinical setting. Results After manual decontamination, 25% (23/91) of the tested objects in the ED were found to be culture positive with clinically significant microorganisms(CSO). Fifteen percent (ED) of non-critical equipment tested had multiple organisms. Following the use of SUDS, the colonization rate decreased to 0%. Following SUDS treatment and re-introduction into the clinical settings, after 48 hours the contamination rates as reflected by the cultures remained 0%. Conclusion Standard non-critical equipment is contaminated with clinically significant microorganisms. The SUDS device allows for effective and durable decontamination of hospital equipment of varying sizes in the clinical area without disrupting patient care.

Publisher

Springer Science and Business Media LLC

Subject

Surgery

Reference33 articles.

1. Nellcor Compatible Disposable Pulse Oximetry Sensor for Adults [http://formosa-enterprises-llc.amazonwebstore.com/Nellcor-Compatible-Disposable-Pulse-Oximetry-Sensor/M/B001EZN0O8.htm?traffic_src=froogle&utm_medium=organic&utm_source=froogle]

2. Madan AK: "Blood-soaked blood pressure cuff.". AHRQ WebM&M; 2003. [http://www.webmm.ahrq.gov/case.aspx?caseID=12]

3. Spaulding EH: Chemical disinfection of medical and surgical materials. In Disinfection Sterilization and Preservation. Edited by: Lawrence CA, Block SS. Philadelphia, PA: Lea and Febiger; 1968:517–531.

4. Rutala WA: Disinfection and sterilization of patient-care items. Infect Control Hosp Epidemiol 1996, 17: 377–84.

5. Favero MS, Bond WW: Chemical disinfection of medical and surgical materials. In Disinfection, sterilization, and preservation. 4th edition. Edited by: Block SS. Philadelphia: Lea and Febiger; 1991:617–641.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3