Author:
Abdulla Bahrulla,Kiaghadi Amin,Rifai Hanadi S.,Birgisson Bjorn
Abstract
AbstractThis study aims to characterize the vulnerability of road networks to fluvial flooding using a network diffusion-based method. Various network diffusion models have been applied widely for modeling the spreading of contagious diseases or capturing opinion dynamics in social networks. By comparison, their application in the context of physical infrastructure networks has just started to gain some momentum, although physical infrastructure networks also exhibit diffusion-like phenomena under certain stressors. This study applies a susceptible-impacted-susceptible (SIS) diffusion model to capture the impact of flooding on the road network connectivity. To that end, this paper undertook the following four steps. First, the road network was modeled as primal graphs and nodes that were flood-prone (or the origins of the fluvial flood) were identified. Second, temporal changes in the flood depth within the road network during a flooding event were obtained using a data-driven geospatial model. Third, based on the relationship between vehicle speed and flood depth on road networks, at each time step, the nodes in the road network were divided into two discrete categories, namely functional and closed, standing for Susceptible and Impacted in the SIS diffusion model, respectively. Then, two parameters of the SIS model, average transition probabilities between states, were estimated using the results of the hydraulic simulation. Fourth, the robustness of the road network under various SIS diffusion scenarios was estimated, which was used to test the statistical significance of the difference between the robustness of the road network against diffusions started from the randomly chosen nodes and nodes with different high centrality measures. The methodology was demonstrated using the road network in the Memorial super neighborhood in Houston. The results show that diffusive disruptions that start from nodes with high centrality values do not necessarily cause a more significant loss to the connectivity of the road network. The proposed method has important implications for applying link predictions on road networks, and it casts significant insights into the mechanism by which cascading disruptions spread from flood control infrastructure to road networks, as well as the diffusion process in the road networks.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Abdulla B, Mostafavi A, Birgisson B (2019) Characterization of the vulnerability of road networks to fluvial flooding using network percolation approach. In: Computing in Civil Engineering 2019: Smart Cities, Sustainability, and Resilience (pp. 428–435). American Society of Civil Engineers, Reston
2. ASCE. (2017). Report Card for America’s Infrastructure. Retrieved May 9, 2019, from https://www.infrastructurereportcard.org/. Accessed 9 May 2019
3. Ashley ST, Ashley WS (2008) Flood fatalities in the United States. J Appl Meteorol Climatol 47(3):805–818
4. Bashan A, Berezin Y, Buldyrev SV, Havlin S (2013) The extreme vulnerability of interdependent spatially embedded networks. Nat Phys 9(10):667
5. Blackburn J (2017) Living with Houston flooding
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献