Measurement of atmospheric air-earth current density from a tropical station using improvised Wilson’s plate antenna
-
Published:2009-07
Issue:7
Volume:61
Page:919-926
-
ISSN:1343-8832
-
Container-title:Earth, Planets and Space
-
language:en
-
Short-container-title:Earth Planet Sp
Author:
Anil Kumar C. P.,Panneerselvam C.,Nair K. U.,Jeeva K.,Selvaraj C.,Jeyakumar H. Johnson,Gurubaran S.
Abstract
Abstract
We have developed an experimental set-up to measure the atmospheric air-earth current (conduction current). Data obtained with the continuous measurements of Wilson’s plate are used to study of air-earth current density, with the aim of gaining an understanding of the experimental set-up’s response to different meteorological conditions, including fair-weather days. This paper is a part of the on-going Global Electric Circuit (GEC) studies from Tirunelveli (8.7°N, 77.8°E), a measurement site in the tropical and southern tip of the Indian peninsula. Attempts have been made in past few years to obtain the global signature in this region with this sensor, but on most of the occasions it has been impossible to obtain the global signature during fair-weather days. The data used for February–April, 2007 have the well-defined nature of this global signature, which is in agreement with the well-established classical Carnegie curve of GEC. This paper also deals with very important observations made at sunrise and during those hours when fog existed. It is noted that the resistivity of the atmosphere increased significantly with the onset of fog and later decreased as the fog disappeared, based on the measured value of conduction current density when compared with the electric field measured by horizontal passive wire antenna. Also, during fair-weather conditions, conduction current and electric field variations are similar because the conductivity during this period is more or less constant at this site. Observations made during different meteorological conditions, such as different wind speeds, humidities, and temperatures, are also discussed.
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Reference20 articles.
1. Byrne, G. J., J. R. Benbrook, and E. A. Bering, Ground based instrumentation for measurements of atmospheric conduction current and electric field at south pole, J. Geophys. Res., 98, 2611–2619, 1993. 2. Clayton, M. and C. Polk, Electrical process, in Atmospheres, Proc. 5th Int. Conf. on Atmospheric Electricity, edited by G. Partenkirchen, H. Dolezalek, and R. Steinkopt, 440–451, 1977. 3. Datta, T. and A. B. Bhattacharya, Atmospheric electrical field in relation to severe meteorological disturbances, Ind. J. Radio Space Phys., 33, 374–383, 2004. 4. Dhanorkar, S., C. G. Deshpande, and A. K. Kamra, Atmospheric electricity measurements at Pune during the solar eclipse of 18 March 1988, J. Atmos. Terr. Phys., 51, 1031–1040, 1989. 5. Hoppel, W. A., R. V. Anderson, and J. D. Willett, Atmospheric Electricity in the Planetary Boundary Layer, Earth Electrical Environment, National Academy Press, Washington D.C., 1986.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|