Abstract
Abstract
Background
Phospholipases hydrolyze glycerophospholipids and generate diverse lipid-derived molecules with secondary messenger activity. Out of these, phospholipase C (PLC) specifically cleaves the phospholipids at ester linkages and yields diacylglycerol (DAG) and phosphorylated head groups. PLCs are classified further as phosphatidylinositol-specific PLCs (PI-PLCs) and non-specific PLCs with biased specificity for phosphatidylcholine (NPC/PC-PLC).
Results
In the present report, we identified and characterized PLC genes in the genomes of three orchids, Phalaenopsis equestris (seven PePLCs), Dendrobium catenatum (eight DcPLCs), and Apostasia shenzhenica (seven AsPLCs). Multiple sequence alignment analysis confirmed the presence of conserved X and Y catalytic domains, calcium/lipid-binding domain (C2 domain) at the C terminal region, and EF-hand at the N-terminal region in PI-PLC proteins and esterase domain in PC-PLC. Systematic phylogenetic analysis established the relationship of the PLC protein sequences and clustered them into two groups (PI-PLC and PC-PLC) along with those of Arabidopsis thaliana and Oryza sativa. Gene architecture studies showed the presence of nine exons in all PI-PLC genes while the number varied from one to five in PC-PLCs. RNA-seq-based spatio-temporal expression profile for PLC genes was generated, which showed that PePC-PLC1, PePC-PLC2A, DcPC-PLC1A, DcPC-PLC1B, DcPC-PLC2, DcPC-PLC1B, and AsPC-PLC1 had significant expression in all reproductive and vegetative tissues. The expression profile is matched to their upstream cis-regulatory promoter elements, which indicates that PLC genes have a role in various growth and development processes and during stress responses.
Conclusions
The present study unwrapped the opportunity for functional characterization of selected PLC genes in planta for plant improvement.
Funder
Department of Science and Technology, Ministry of Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献