Contribution of glutathione peroxidase 1 (Pro200Leu) single nucleotide polymorphism and serum homocysteine levels in the risk of acute myocardial infarction in Egyptians

Author:

Ismail Lamia K.,Abdel Rahman Mohamed F.ORCID,Hashad Ingy M.,Abdel-Maksoud Sahar M.

Abstract

Abstract Background Oxidative stress is among the most common risk factors in the pathogenesis of acute myocardial infarction (AMI). Glutathione peroxidase 1 enzyme coded by the GPX1 gene plays an essential role in reducing oxidative stress. Previous studies correlated the GPX1 (Pro200Leu) single nucleotide polymorphism (SNP) with AMI incidence. Elevated homocysteine (Hcy) levels induce oxidative stress and are considered an independent risk factor for AMI. Evidence showed a complex relationship between Hcy and GPx-1 activity. This study examined the association of the common (Pro200Leu) SNP in GPX1 with AMI incidence in an Egyptian population. This study is the first to check this association in an Egyptian population. Moreover, the association between serum Hcy and the incidence of AMI was checked, and the novelty was to statistically correlate GPX1 Pro200Leu genotypes with serum Hcy levels in patients and control subjects. Hundred control subjects and hundred and twenty AMI patients were genotyped using PCR-RFLP analysis. An ELISA was used to measure serum Hcy levels. Results The GPX1 (Pro200Leu) genotype distribution and allele frequency were not significantly different between patients and control subjects (P = 0.60 and P = 0.62, respectively). Serum levels of Hcy were significantly elevated in patients compared to control subjects (P ≤ 0.0001). However, no significant difference was observed in serum Hcy levels among different GPX1 genotypes in neither patients nor control subjects. Conclusions The minor T allele of GPX1 Pro200Leu is not associated with AMI risk in this Egyptian population. However, high homocysteine serum levels might contribute independently to the risk of AMI. Finally, Hcy levels were not significantly different in homozygous minor TT compared to homozygous wild CC.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3