Structural and functional characterization of a hypothetical protein in the RD7 region in clinical isolates of Mycobacterium tuberculosis — an in silico approach to candidate vaccines

Author:

Kootery Kaviya ParambathORCID,Sarojini SumaORCID

Abstract

Abstract Background Mycobacterium tuberculosis has been ravaging humans by inflicting respiratory tuberculosis since centuries. Bacillus Calmette Guerine (BCG) is the only vaccine available for tuberculosis, and it is known to be poorly effective against adult tuberculosis. Proteins belonging to the ESAT-6 family and PE/PPE family show immune responses and are included in different vaccine trials. Herein, we study the functional and structural characterization of a 248 amino acid long putative protein novel hypothetical protein 1 (NHP1) present in the RD7 region of Mycobacterium tuberculosis (identified first by subtractive hybridization in the clinical isolate RGTB123) using bioinformatics tools. Results Physicochemical properties were studied using Expasy ProtParam and SMS software. We predicted different B-cell and T-cell epitopes by using the immune epitope database (IEDB) and also tested antigenicity, immunogenicity, and allergenicity. Secondary structure of the protein predicted 30% alpha helices, 20% beta strands, and 48% random coils. Tertiary structure of the protein was predicted using the Robetta server using the Mycobacterium smegmatis protein as the putative protein with homology. Structural evaluations were done with Ramachandran plot analysis, ProSA-web, and VERIFY3D, and with GalaxyWEB server, a more stable structure was validated with good stereo chemical properties. Conclusion The present study of a subtracted genomic locus using various bioinformatics tools indicated good immunological properties of the putative mycobacterial protein, NHP1. Evidence obtained from the analyses of NHP1 using structure prediction tools strongly point to the fact that NHP1 is an ancient protein having flavodoxin folding structure with ATP binding sites. Positive scores were obtained for antigenicity, immunogenicity, and virulence too, implying the possibility of NHP1 to be a potential vaccine candidate. Such computational studies might give clues for developing newer vaccines for tuberculosis, which is the need of the hour.

Funder

KSTA

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference59 articles.

1. Chakaya J, Khan M, Ntoumi F, Aklillu E, Fatima R, Mwaba P, Kapata N, Mfinanga S, Hasnain SE, Katoto PDMC, Bulabula ANH, Sam-Agudu NA, Nachega JB, Tiberi S, McHugh TD, Abubakar I, Zumla A (2021) Global Tuberculosis Report 2020–reflections on the Global TB burden, treatment and prevention efforts. Int J Infect Dis 11(21):1201–9712. https://doi.org/10.1016/j.ijid.2021.02.107

2. Andersen P, Doherty TM (2005) The success and failure of BCG—implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3(8):656–662 https://doi.org/10.1038/nrmicro1211

3. Ndiaye B, Thienemann F, Ota M, Landry B, Camara M, Dièye S, Esmail H, Goliath R, Huygen K, January V, Ndiaye I, Qni T, Raine M, Romano M, Satti I, Sutton S, Thiam A, Wilkinson KA, Mboup S, Wilkinson RJ, Mcshane H (2015) MVA85A 030 trial investigators safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 3(3):190–200. https://doi.org/10.1016/S2213-2600(15)00037-5 Epub 2015 Feb 26

4. Mortimer TD, Weber AM, Pepperell CS (2018) Signatures of selection at drug resistance loci in Mycobacterium tuberculosis. mSystems 3(1):e00108–e00117. https://doi.org/10.1128/mSystems.00108-17

5. Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CR, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 396(6707):190–190 https://doi.org/10.1038/31159

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3