In silico analysis of a novel causative mutation in Cadherin23 gene identified in an Omani family with hearing loss

Author:

Al-Kindi Mohammed Nasser,Al-Khabouri Mazin Jawad,Al-Lamki Khalsa Ahmad,Palombo Flavia,Pippucci Tommaso,Romeo Giovanni,Al-Wardy Nadia MohammedORCID

Abstract

Abstract Background Hereditary hearing loss is a heterogeneous group of complex disorders with an overall incidence of one in every 500 newborns presented as syndromic and non-syndromic forms. Cadherin-related 23 (CDH23) is one of the listed deafness causative genes. It is found to be expressed in the stereocilia of hair cells and in the retina photoreceptor cells. Defective CDH23 have been associated mostly with prelingual severe-to-profound sensorineural hearing loss (SNHL) in either syndromic (USH1D) or non-syndromic SNHL (DFNB12) deafness. The purpose of this study was to identify causative mutations in an Omani family diagnosed with severe-profound sensorineural hearing loss by whole exome sequencing technique and analyzing the detected variant in silico for pathogenicity using several in silico mutation prediction software. Results A novel homozygous missense variant, c.A7436C (p. D2479A), in exon 53 of CDH23 was detected in the family while the control samples were all negative for the detected variant. In silico mutation prediction analysis showed the novel substituted D2479A to be deleterious and protein destabilizing mutation at a conserved site on CDH23 protein. Conclusion In silico mutation prediction analysis might be used as a useful molecular diagnostic tool benefiting both genetic counseling and mutation verification. The aspartic acid 2479 alanine missense substitution might be the main disease-causing mutation that damages CDH23 function and could be used as a genetic hearing loss marker for this particular Omani family.

Funder

Sultan Qaboos University

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3