Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina

Author:

Samiei LeilaORCID,Davoudi Pahnehkolayi Mahboubeh,Tehranifar Ali,Karimian Zahra

Abstract

Abstract Background Rosa canina is one of the most popular rose species which is widely used as the rootstock for the propagation of rose cultivars. The purpose of the present study is to improve the in vitro propagation efficiency of this valuable plant species using various growth stimulants in a proliferation medium. In this study, in vitro-derived axillary buds of R. canina were inoculated in Vander Salm (VS) medium supplemented with varying levels of organic or inorganic elicitors including casein hydrolysate (200, 400, and 600 mg/l), glutamic acid (2, 4, 8, and 12 mg/l), proline (500, 1000, 1500, and 2000 mg/l), and silver nitrate (25, 50, 75, and 100 mg/l), separately. Benzyl amino purine (BAP) as well as naphthalin acetic acid (NAA) were added to all media at a constant rate to promote shoot proliferation. Results The results indicated that the supplementation of casein hydrolysate to the VS medium markedly stimulated shoot regeneration by 173% in comparison to control. Shoot proliferation was also positively influenced by glutamic acid at all levels, however, at a lesser extent compared to casein hydrolysate. Silver nitrate at 100 mg/l induced the longest shoots (2.52 ± 0.248 cm) and maximum leaf number (8.90 ± 0.276) among all treatments. Although it did not encourage efficient shoot regeneration, the highest quality shoots with maximum growth vigor were observed in this treatment. Conclusion In this study, the promising role of casein hydrolysate in combination with plant growth regulators has been emphasized for the improved efficiency of R. canina regeneration protocol. Moreover, the addition of silver nitrate to the culture medium seems vital for enhancing the quality of regenerated shoots. The results of this study could be beneficial either for the further pharmaceutical or biochemical investigations of R. canina or commercial purposes for mass propagation of this specimen.

Funder

Ferdowsi University of Mashhad

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3