A shotgun approach to explore the bacterial diversity and a brief insight into the glycoside hydrolases of Samiti lake located in the Eastern Himalayas

Author:

Rai Aditi,Saha Shyama Prasad,Manvar Toral,Bhattacharjee ArindamORCID

Abstract

Abstract Background The Himalayas have always been an enigma and, being biodiversity hotspots, are considered extremely important from an ecological point of view. Recent advances in studies regarding high-altitude lakes have garnered relevant importance as these habitats could harbor potential psychrophilic and psychrotrophic microbes with bio-prospective applications. Contemplating the above scenario, the present study has been undertaken to understand the diversity and the functional capacities of the microbes thriving in this lake. Results In our present study on Samiti Lake, the abundance of Proteobacteria as the major phylum was seen in both the soil and water samples. Incase of the ABSLW (water) and ABS1 (soil) sample, 148,066 and 239,754 predicted genes, were taken for functional analysis. The KEGG analysis showed that ABSLW and ABS1 had 122,911 and 160,268, genes assigned to KO terms respectively. Whereas in case of COG functional analysis, 104,334 and 130,191 genes were assigned to different COG classes for ABSLW and ABS1 respectively. Further, on studying the glycoside hydrolases, an abundance of GH13, GH2, GH3, GH43, and GH23 in both the soil and water samples were seen. Conclusion Our study has provided a comprehensive report about the bacterial diversity and functional capacities of microbes thriving in Samiti Lake.  It has also thrown some light on the occurrence of glycoside hydrolases in this region, as they have numerous biotechnological applications in different sectors.

Funder

Department of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing Soil Ecosystem Services for Achieving Soil-Based SDGs in Indian Himalaya;Soil Carbon Dynamics in Indian Himalayan Region;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3