Abstract
Abstract
Background/Aims
The activation of the complement system and subsequent inflammatory responses are important features of myocardial ischemia/reperfusion (I/R) injury. Exosomes are nanoscale extracellular vesicles that play a significant role in remote ischemic preconditioning (RIPC) cardioprotection. The present study aimed to test whether RIPC-induced plasma exosomes (RIPC-Exo) exert protective effects on myocardial I/R injury by inhibiting complement activation and inflammation and whether exosomal heat shock protein 90 (HSP90) mediates these effects.
Methods
Rat hearts underwent 30 min of coronary ligation followed by 2 h of reperfusion. Plasma exosomes were isolated from RIPC rats and injected into the infarcted myocardium immediately after ligation. Sixty rats were randomly divided into Sham, I/R, I/R + RIPC-Exo (50 µg/µl), and RIPC-Exo + GA (geldanamycin, 1 mg/kg, administration 30 min before ligation) groups. Cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB), infarct size, the expression of HSP90, complement component (C)3, C5a, c-Jun N-terminal kinase (JNK), interleukin (IL)-1β, tumor necrosis factor (TNF)-alpha and intercellular adhesion molecule -1 (ICAM-1) were assessed.
Results
RIPC-Exo treatment significantly reduced I/R-induced cardiomyocyte apoptosis, the release of myocardial markers (LDH, cTnI and CK-MB) and infarct size. These beneficial effects were accompanied by decreased C3 and C5a expression, decreased inflammatory factor levels (IL-1β, TNF-α, and ICAM-1), decreased JNK and Bax, and increased Bcl-2 expression. Meanwhile, the expression of HSP90 in the exosomes from rat plasma increased significantly after RIPC. However, treatment with HSP90 inhibitor GA significantly reversed the cardioprotection of RIPC-Exo, as well as activated complement component, JNK signalling and inflammation, indicating that HSP90 in exosomes isolated from the RIPC was important in mediating the cardioprotective effects during I/R.
Conclusion
Exosomal HSP90 induced by RIPC played a significant role in cardioprotection against I/R injury, and its function was in part linked to the inhibition of the complement system, JNK signalling and local and systemic inflammation, ultimately alleviating I/R-induced myocardial injury and apoptosis by the upregulation of Bcl-2 expression and the downregulation of proapoptotic Bax.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Reference46 articles.
1. Roth G, Mensah G, Johnson C, Addolorato G, Ammirati E, Baddour L, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.
2. Schirone L, Forte M, D’Ambrosio L, Valenti V, Vecchio D, Schiavon S, et al. An overview of the molecular mechanisms associated with myocardial ischemic injury: state of the art and translational perspectives. Heart. 2022;11:1165.
3. Andreka G, Vertesaljai M, Szantho G, Font G, Piroth Z, Fontos G, et al. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs. Heart. 2007;93:749.
4. Zhang J, Zhang J, Yu P, Chen M, Peng Q, Wang Z, et al. Remote ischaemic preconditioning and sevoflurane postconditioning synergistically protect rats from myocardial injury induced by ischemia and reperfusion partly via inhibition TLR4/MyD88/NF-κB signaling pathway. Cell Physiol Biochem. 2017;41:22.
5. Konstantinov I, Arab S, Li J, Coles J, Boscarino C, Mori A, et al. The remote ischemic preconditioning stimulus modifies gene expression in mouse myocardium. Cell Physiol Biochem. 2005;130:1326–32.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献