Author:
Liu Yafeng,Hu Niandan,Ai Bo,Xia Hao,Li Wenqiang
Abstract
AbstractSeptic cardiomyopathy is one of the most severe and common complications in patients with sepsis and poses a great threat to their prognosis. However, the potential mechanisms and effective therapeutic drugs need to be explored. The control of cardiac cell death by miRNAs has emerged as a prominent area of scientific interest in the diagnosis and treatment of heart disorders in recent times. In the present investigation, we discovered that overexpression of miR-31-5p prevented LPS-induced damage to H9C2 cells and that miR-31-5p could inhibit BAP1 production by binding to its 3’-UTR. BRCA1-Associated Protein 1 (BAP1) is a ubiquitin carboxy-terminal hydrolase. BAP1 upregulation blocked effect of miR-31-5p on H9C2 cell injury. Moreover, BAP1 inhibited the expression of solute carrier family 7 member 11 (SLC7A11) by deubiquitinating histone 2 A (H2Aub) on the promoter of SLC7A11. Furthermore, overexpression of miR-31-5p and downregulation of BAP1 inhibited SLC7A11 mediated ferroptosis. In addition, the downregulation of SLC7A11 reversed the inhibitory effect of miR-31-5p on the expression of myocardial injury and inflammatory factors, and cell apoptosis was reversed. In conclusion, these results indicate that miR-31-5p alleviates malignant development of LPS-induced H9C2 cell injury by targeting BAP1 and regulating SLC7A11 deubiquitination-mediated ferroptosis, which confirmed the protective effect of miR-31-5p on H9C2 cell injury and revealed potential mechanisms that may provide new targets for treatment of septic cardiomyopathy.
Funder
Natural Science Foundation of Hubei Province
Publisher
Springer Science and Business Media LLC