Effect of high pressure and heat treatments on black tiger shrimp (Penaeus monodon Fabricius) muscle protein

Author:

Jantakoson Thitima,Kijroongrojana Kongkarn,Benjakul Soottawat

Abstract

Abstract Application of high pressure, a minimal processing, has gained interest particularly in extending the shelf-life or modifying the texture of seafood, especially in shrimp. However, pressurization may render the products with different texture as compared with their fresh and heated counterparts. Therefore, the impact of high-pressure treatment (200, 400, 600, and 800 MPa for 20 min at 28°C) on black tiger shrimp muscle proteins in comparison with heat treatment (100°C for 2 min) was investigated. Differential scanning calorimetry thermogram indicated that high pressure up to 200 MPa for 20 min induced the denaturation of myosin and actin with subsequent formation of a network stabilized by hydrogen bond. An electrophoretic study revealed that the sample pressurized at 800 MPa or heated at 100°C was also stabilized by disulfide bond. L*, a*, and b* values, compression force, and shear force increased with increasing pressure (p < 0.05). The heat-treated sample had higher L*, a*, b*, and shear force (toughening) than the pressurized and fresh samples (p < 0.05). Pressure at different levels had no effect on weight loss (p ≥ 0.05). However, a weight loss of 27.89% was observed in the heat-treated sample. Proteolytic activity of crude extract from the pressurized sample at 200 to 600 MPa did not differ from that of the fresh sample (p < 0.05). Nevertheless, the activity in the heated sample and that of the pressurized sample at 800 MPa decreased, indicating the inactivation of endogenous proteases in the muscle.

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3