Abstract
Abstract
Backgrounds
High level of anion gap (AG) was associated with organic acidosis. This study aimed to explore the relationship between delta AG (ΔAG = AGmax − AGmin) during first 3 days after intensive care unit (ICU) admission and hospital mortality for patients admitted in the cardiothoracic surgery recovery unit (CSRU).
Methods
In this retrospective cohort study, we identified patients from the open access database called Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC III). A logistic regression model was established to predict hospital mortality by adjusting confounding factors using a stepwise backward elimination method. We conducted receiver operating characteristic (ROC) curves to compare the diagnostic performance of acid–base variables. Cox regression model and Kaplan Meier curve were applied to predict patients’ 90-day overall survival (OS).
Results
A total of 2,860 patients were identified. ΔAG was an independent predictive factor of hospital mortality (OR = 1.24 per 1 mEq/L increase, 95% CI: 1.11–1.39, p < 0.001). The area under curve (AUC) values of ΔAG suggested a good diagnostic accuracy (AUC = 0.769). We established the following formula to estimate patients’ hospital mortality: Logit(P) = − 15.69 + 0.21ΔAG + 0.13age-0.21BE + 2.69AKF. After calculating Youden index, patients with ΔAG ≥ 7 was considered at high risk (OR = 4.23, 95% CI: 1.22–14.63, p = 0.023). Kaplan Meier curve demonstrated that patients with ΔAG ≥ 7 had a poorer 90-day OS (Adjusted HR = 3.20, 95% CI: 1.81–5.65, p < 0.001).
Conclusion
ΔAG is a prognostic factor of hospital mortality and 90-day OS. More prospective studies are needed to verify and update our findings.
Funder
Xuzhou Clinical Technology Key Research Project
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Antonini B, Piva S, Paltenghi M, Candiani A, Latronico N. The early phase of critical illness is a progressive acidic state due to unmeasured anions. Eur J Anaesthesiol. 2008;25(7):566–71.
2. Rastegar A. Clinical utility of Stewart’s method in diagnosis and management of acid-base disorders. Clin J Am Soc Nephrol CJASN. 2009;4(7):1267–74.
3. Oh MS, Carroll HJ. The anion gap. New Engl J Med. 1977;297(15):814–7.
4. Zheng CM, Liu WC, Zheng JQ, Liao MT, Ma WY, Hung KC, Lu CL, Wu CC, Lu KC. Metabolic acidosis and strong ion gap in critically ill patients with acute kidney injury. BioMed Res Int. 2014;2014:819528.
5. Mohr NM, Vakkalanka JP, Faine BA, Skow B, Harland KK, Dick-Perez R, Fuller BM, Ahmed A, Simson SQ. Serum anion gap predicts lactate poorly, but may be used to identify sepsis patients at risk for death: a cohort study. J Crit Care. 2018;44:223–8.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献