Abstract
Abstract
Background
Autophagy is an evolutionarily conserved intracellular process that is used for delivering proteins and organelles to the lysosome for degradation. For decades, autophagy has been speculated to regulate amyloid-β peptide (Aβ) accumulation, which is involved in Alzheimer’s disease (AD); however, specific autophagic effects on the Aβ kinetics only have begun to be explored.
Results
We develop a mathematical model for autophagy with respect to Aβ kinetics and perform simulations to understand the quantitative relationship between Aβ levels and autophagy activity. In the case of an abnormal increase in the Aβ generation, the degradation, secretion, and clearance rates of Aβ are significantly changed, leading to increased levels of Aβ. When the autophagic Aβ degradation is defective in addition to the increased Aβ generation, the Aβ-regulation failure is accompanied by elevated concentrations of autophagosome and autolysosome, which may further clog neurons.
Conclusions
The model predicts that modulations of different steps of the autophagy pathway (i.e., Aβ sequestration, autophagosome maturation, and intralysosomal hydrolysis) have significant step-specific and combined effects on the Aβ levels and thus suggests therapeutic and preventive implications of autophagy in AD.
Funder
National Research Foundation
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Modelling and Simulation
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献