Author:
Wong Kimberly Yuin Y’ng,Moy Foong Ming,Shafie Aziz,Rampal Sanjay
Abstract
Abstract
Background
The escalating trend of obesity in Malaysia is surmounting, and the lack of evidence on the environmental influence on obesity is untenable. Obesogenic environmental factors often emerge as a result of shared environmental, demographic, or cultural effects among neighbouring regions that impact lifestyle. Employing spatial clustering can effectively elucidate the geographical distribution of obesity and pinpoint regions with potential obesogenic environments, thereby informing public health interventions and further exploration on the local environments. This study aimed to determine the spatial clustering of body mass index (BMI) among adults in Malaysia.
Method
This study utilized information of respondents aged 18 to 59 years old from the National Health and Morbidity Survey (NHMS) 2014 and 2015 at Peninsular Malaysia and East Malaysia. Fast food restaurant proximity, district population density, and district median household income were determined from other sources. The analysis was conducted for total respondents and stratified by sex. Multilevel regression was used to produce the BMI estimates on a set of variables, adjusted for data clustering at enumeration blocks. Global Moran’s I and Local Indicator of Spatial Association statistics were applied to assess the general clustering and location of spatial clusters of BMI, respectively using point locations of respondents and spatial weights of 8 km Euclidean radius or 5 nearest neighbours.
Results
Spatial clustering of BMI independent of individual sociodemographic was significant (p < 0.001) in Peninsular and East Malaysia with Global Moran’s index of 0.12 and 0.15, respectively. High-BMI clusters (hotspots) were in suburban districts, whilst the urban districts were low-BMI clusters (cold spots). Spatial clustering was greater among males with hotspots located closer to urban areas, whereas hotspots for females were in less urbanized areas.
Conclusion
Obesogenic environment was identified in suburban districts, where spatial clusters differ between males and females in certain districts. Future studies and interventions on creating a healthier environment should be geographically targeted and consider gender differences.
Funder
FUNDAMENTAL RESEARCH GRANT SCHEME from Ministry of Science Technology and Innovation, Malaysia
Publisher
Springer Science and Business Media LLC
Reference116 articles.
1. WHO. Obesity and overweight 2024. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
2. Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2019;393(10184):1958–72.
3. Quiñones-Ossa GA, Lobo C, Garcia-Ballestas E, Florez WA, Moscote-Salazar LR, Agrawal A. Obesity and stroke: does the paradox apply for stroke? Neurointervention. 2021;16(1):9–19.
4. Tremmel M, Gerdtham U-G, Nilsson PM, Saha S. Economic Burden of obesity: a systematic literature review. Int J Environ Res Public Health. 2017;14(4):435.
5. Divino V, Ramasamy A, Anupindi VR, Eriksen KT, Olsen AH, DeKoven M, et al. Complication-specific direct medical costs by body mass index for 13 obesity-related complications: a retrospective database study. J Manag Care Spec Pharm. 2021;27(2):210–22.