Construction and validation of a predictive model for hepatocellular carcinoma based on serum markers

Author:

Zheng Liming,Huang Zeyu,Li Xiaoping,He Meifang,Liu Xiaoqin,Zheng Guojun,Zhou Xike,Liu Longgen

Abstract

Abstract Background Early hepatocellular carcinoma (HCC) detection with non-invasive biomarkers remains an unmet clinical need. We aimed to construct a predictive model based on the pre-diagnostic levels of serum markers to predict the early-stage onset of HCC. Methods A total of 339 HCC patients (including 157 patients from Changzhou cohort and 182 patients from Wuxi cohort) were enrolled in our retrospective study. Levels of 25 baseline serum markers were collected. Propensity score matching (PSM) analysis was conducted to balance the distributions of patients’ gender, age, and the surveillance time between HCC group and control group. Then, Receiver operating characteristic (ROC) and Logistic regression analysis were performed to screen the independent predictive variables and construct a non-invasive predictive model. Subsequently, ROC curve and Kaplan–Meier (K–M) curve were used to evaluate the predictive values of the model. Clinical net benefit of the model was demonstrated by decision curve analysis (DCA) and clinical impact curve. Results Five independent predictive variables for HCC onset and two general characteristics of patients (age and gender) were incorporated into the score model. ROC and DCA curves showed that the score model had better predictive performance in discrimination and clinical net benefit compared with single variable or other score systems, with the area under the curve (AUC) of 0.890 (95% CI 0.856–0.925) in Changzhou cohort and 0.799 (95% CI 0.751–0.849) in Wuxi cohort. Meanwhile, stratification analysis indicated that the score model had good predictive values for patients with early tumor stage (AJCC stage I) or small tumors (< 2 cm). Moreover, the score of HCC patient began to increase at 30 months before clinical diagnosis and reach a peak at 6 months. Conclusion Based on this model, we could optimize the current risk stratification at an early stage and consider further intensive surveillance programs for high-risk patients. It could also help clinicians to evaluate the progression and predict the prognosis of HCC patients.

Funder

Major Projects of Changzhou Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3