Dual regulation by ethanol of the inhibitory effects of ketamine on spinal NMDA-induced pressor responses in rats

Author:

Keng Nien-Tzu,Lin Hsun-Hsun,Lin Huei-Ru,Hsieh Wei-Kung,Lai Chih-Chia

Abstract

Abstract Background Acute exposure of ethanol (alcohol) inhibits NMDA receptor function. Our previous study showed that acute ethanol inhibited the pressor responses induced by NMDA applied intrathecally; however, prolonged ethanol exposure may increase the levels of phosphorylated NMDA receptor subunits leading to changes in ethanol inhibitory potency on NMDA-induced responses. The present study was carried out to examine whether acute ethanol exposure influences the effects of ketamine, a noncompetitive NMDA receptor antagonist, on spinal NMDA-induced pressor responses. Methods The blood pressure responses induced by intrathecal injection of NMDA were recorded in urethane-anesthetized rats weighing 250-275 g. The levels of several phosphorylated residues on NMDA receptor GluN1 subunits were determined by western blot analysis. Results Intravenous injection of ethanol or ketamine inhibited spinal NMDA-induced pressor responses in a dose-dependent and reversible manner. Ketamine inhibition of NMDA-induced responses was synergistically potentiated by ethanol when ethanol was applied just before ketamine. However, ketamine inhibition was significantly reduced when applied at 10 min after ethanol administration. Western blot analysis showed that intravenous ethanol increased the levels of phosphoserine 897 on GluN1 subunits (pGluN1-serine 897), selectively phosphorylated by protein kinase A (PKA), in the lateral horn regions of spinal cord at 10 min after administration. Intrathecal administration of cAMPS-Sp, a PKA activator, at doses elevating the levels of pGluN1-serine 897, significantly blocked ketamine inhibition of spinal NMDA-induced responses. Conclusions The results suggest that ethanol may differentially regulate ketamine inhibition of spinal NMDA receptor function depending on ethanol exposure time and the resulting changes in the levels of pGluN1-serine 897.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3