Transcriptomic responses in the nervous system and correlated behavioural changes of a cephalopod exposed to ocean acidification

Author:

Thomas Jodi T.,Huerlimann Roger,Schunter Celia,Watson Sue-Ann,Munday Philip L.,Ravasi Timothy

Abstract

Abstract Background The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. Results We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid (Idiosepius pygmaeus) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO2 treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations among gene expression profiles, CO2 treatment and OA-affected behaviours. Conclusions This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gaps in our knowledge between environmental change and animal responses.

Funder

Australian Government Research Training Program Scholarship

Okinawa Institute of Science and Technology Graduate University

Australian Research Council Centre of Excellence for Coral Reef Studies

Publisher

Springer Science and Business Media LLC

Reference122 articles.

1. Fuller A, Dawson T, Helmuth B, Hetem Robyn S, Mitchell D, Maloney Shane K. Physiological mechanisms in coping with climate change. Physiol Biochem Zool. 2010;83(5):713–20.

2. Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, et al. What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol. 2013;1(1):cot001.

3. Kelley J, Chapuis L, Davies WIL, Collin S. Sensory system responses to human-induced environmental change. Front Ecol Evol. 2018;6:95.

4. O’Donnell S. The neurobiology of climate change. Sci Nat. 2018;105(1):1–7.

5. Bindoff NL, Cheung WW, Kairo JG, Arístegui J, Guinder VA, Hallberg R, et al. Changing ocean, marine ecosystems, and dependent communities. In: Pörtner H-O, Roberts D, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, et al. editors. IPCC Special Report on the Ocean and Cryosphere in a changing climate. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2019. pp. 447–587.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3