Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis

Author:

Challacombe Jean F.ORCID,Hesse Cedar N.,Bramer Lisa M.,McCue Lee Ann,Lipton Mary,Purvine Samuel,Nicora Carrie,Gallegos-Graves La Verne,Porras-Alfaro Andrea,Kuske Cheryl R.

Abstract

Abstract Background The dominant fungi in arid grasslands and shrublands are members of the Ascomycota phylum. Ascomycota fungi are important drivers in carbon and nitrogen cycling in arid ecosystems. These fungi play roles in soil stability, plant biomass decomposition, and endophytic interactions with plants. They may also form symbiotic associations with biocrust components or be latent saprotrophs or pathogens that live on plant tissues. However, their functional potential in arid soils, where organic matter, nutrients and water are very low or only periodically available, is poorly characterized. Results Five Ascomycota fungi were isolated from different soil crust microhabitats and rhizosphere soils around the native bunchgrass Pleuraphis jamesii in an arid grassland near Moab, UT, USA. Putative genera were Coniochaeta, isolated from lichen biocrust, Embellisia from cyanobacteria biocrust, Chaetomium from below lichen biocrust, Phoma from a moss microhabitat, and Aspergillus from the soil. The fungi were grown in replicate cultures on different carbon sources (chitin, native bunchgrass or pine wood) relevant to plant biomass and soil carbon sources. Secretomes produced by the fungi on each substrate were characterized. Results demonstrate that these fungi likely interact with primary producers (biocrust or plants) by secreting a wide range of proteins that facilitate symbiotic associations. Each of the fungal isolates secreted enzymes that degrade plant biomass, small secreted effector proteins, and proteins involved in either beneficial plant interactions or virulence. Aspergillus and Phoma expressed more plant biomass degrading enzymes when grown in grass- and pine-containing cultures than in chitin. Coniochaeta and Embellisia expressed similar numbers of these enzymes under all conditions, while Chaetomium secreted more of these enzymes in grass-containing cultures. Conclusions This study of Ascomycota genomes and secretomes provides important insights about the lifestyles and the roles that Ascomycota fungi likely play in arid grassland, ecosystems. However, the exact nature of those interactions, whether any or all of the isolates are true endophytes, latent saprotrophs or opportunistic phytopathogens, will be the topic of future studies.

Funder

EMSL High-Performance Mass Spectrometry Facility

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference189 articles.

1. Porras-Alfaro A, Bayman P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol. 2011;49:291–315.

2. Porras-Alfaro A, Muniania CN, Hamm PS, Torres-Crus TJ, Kuske CR. Fungal Diversity, Community Structure and Their Functional Roles in Desert Soils. In: Steven B, editor. The Biology of Arid Soils. 1: De Gruyter; 2017. p. 97–122.

3. Taylor DL, Sinsabaugh RL. The soil Fungi: occurrence, phylogeny, and ecology. In: Paul EA, editor. Soil microbiology, Ecology and Biochemistry. London, San Diego, Waltham, Oxford: Academic Press, Elsevier; 2015.

4. Green LE, Porras-Alfaro A, Sinsabaugh RL. Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol. 2008;96:1076–85.

5. Crenshaw C, Lauber C, Sinsabaugh RL, Stavely LK. Fungal dominance of nitrogen transformation in semi-arid grassland. Biogeochemistry. 2008;87:17–27.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3