A homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits

Author:

Fatima Nazira,Jia Linying,Liu Baoning,Li Lu,Bai Liang,Wang Weirong,Zhao Sihai,Wang Rong,Liu Enqi

Abstract

Abstract Background Rabbits are well-domesticated animals. As a crucial economic animal, rabbit has been successfully bred into wool-use, meat-use and fur-use breeds. Hair length is one of the most economically important traits affecting profitability in wool rabbits. In this study, to identify selection signatures with the long-hair trait, whole-genomic resequencing of long-haired rabbits (Angora rabbits) and short-haired rabbits (Rex and New Zealand rabbits) was performed. Results By genome-wide selective sweeping analysis based on population comparison, we identified a total of 5.85 Mb regions (containing 174 candidate genes) with strong selection signals. Six of these genes (Dusp1, Ihh, Fam134a, Map3k1, Spata16, and Fgf5) were enriched in the MAPK signalling and Hedgehog signalling pathways, both of which are closely associated with hair growth regulation. Among these genes, Fgf5 encodes the FGF5 protein, which is a well-established regulator of hair growth. There was a nonsynonymous nucleotide substitution (T19234C) in the Fgf5 gene. At this locus, the C allele was present in all of the tested Angora rabbits, while the T allele was dominant in New Zealand and Rex rabbits. We further confirmed that the C allele was conserved in Angora rabbits by screening an additional 135 rabbits. Moreover, the results of functional predictions and co-immunoprecipitation revealed that the T19234C mutation impaired the binding capacity of FGF5 to its receptor FGFR1. Conclusions We discovered that the homozygous missense mutation T19234C within Fgf5 might contribute to the long-hair trait of Angora rabbits by reducing its receptor binding capacity. This finding will provide new insights into the genetic basis underlying the genetic improvement of Angora rabbits and benefit the improvement of rabbit breeding in the future.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference55 articles.

1. Carneiro M, Afonso S, Geraldes A, Garreau H, Bolet G, Boucher S, et al. The genetic structure of domestic rabbits. Mol Biol Evol. 2011;28(6):1801–16.

2. Dorozynska K, Maj D. Rabbits - their domestication and molecular genetics of hair coat development and quality. Anim Genet. 2021;52(1):10–20.

3. Schlink AC, Liu SM. Angora Rabbits- A potential new industry for Australia. In: A Report for the Rural Industries Research and Development Corporation. Barton, Act.: RIRDC; 2003.

4. Mary GK. Angora rabbit fiber production in the World and Turkey. American Journal of Materials Engineering and Technology. 2014; 2(2):8–10.

5. Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15(1):1647–70.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3