Author:
Zhou Xiujuan,Liu Bin,Liu Yanhong,Shi Chunlei,Fratamico Pina M.,Zhang Lida,Wang Dapeng,Zhang Jianhua,Cui Yan,Xu Ping,Shi Xianming
Abstract
Abstract
Background
Salmonella is a major bacterial pathogen associated with a large number of outbreaks of foodborne diseases. Many highly virulent serovars that cause human illness belong to Salmonella serogroup C1, and Salmonella ser. Choleraesuis is a prominent cause of invasive infections in Asia. Comparative genomic analysis in our previous study showed that two homologous genes, SC0368 and SC0595 in Salmonella ser. Choleraesuis were unique to serogroup C1. In this study, two single-deletion mutants (Δ0368 and Δ0595) and one double-deletion mutant (Δ0368Δ0595) were constructed based on the genome. All these mutants and the wild-type strain were subjected to RNA-Seq analysis to reveal functional relationships of the two serogroup C1-specific genes.
Results
Data from RNA-Seq indicated that deletion of SC0368 resulted in defects in motility through repression of σ28 in flagellar regulation Class 3. Consistent with RNA-Seq data, results from transmission electron microcopy (TEM) showed that flagella were not present in △0368 and △0368△0595 mutants resulting in both swimming and swarming defects. Interestingly, the growth rates of two non-motile mutants △0368 and △0368△0595 were significantly greater than the wild-type, which may be associated with up-regulation of genes encoding cytochromes, enhancing bacterial proliferation. Moreover, the △0595 mutant was significantly more invasive in Caco-2 cells as shown by bacterial enumeration assays, and the expression of lipopolysaccharide (LPS) core synthesis-related genes (rfaB, rfaI, rfaQ, rfaY, rfaK, rfaZ) was down-regulated only in the △0368△0595 mutant. In addition, this study also speculated that these two genes might be contributing to serotype conversion for Salmonella C1 serogroup based on their apparent roles in biosynthesis of LPS and the flagella.
Conclusion
A combination of biological and transcriptomic (RNA-Seq) analyses has shown that the SC0368 and SC0595 genes are involved in biosynthesis of flagella and complete LPS, as well as in bacterial growth and virulence. Such information will aid to revealing the role of these specific genes in bacterial physiology and evolution within the serogroup C1.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Haselbeck AH, Panzner U, Im J, Baker S, Meyer CG, Marks F. Current perspectives on invasive nontyphoidal Salmonella disease. Curr Opin Infect Dis. 2017;30(5):498–503. https://doi.org/10.1097/QCO.0000000000000398.
2. Grimont PAD, Weill FX. Antigenic formulae of the Salmonella serovars. In: WHO Collaborating Centre for Reference and Research on Salmonella. 9th ed. Paris: Institut Pasteur; 2007.
3. Fuche FJ, Sow O, Simon R, Tennant SM. Salmonella serogroup C: current status of vaccines and why they are needed. Clin Vaccine Immunol. 2016;23(9):737–45. https://doi.org/10.1128/CVI.00243-16.
4. Chiu CH, Chuang CH, Chiu S, Su LH, Lin TY. Salmonella enterica serotype Choleraesuis infections in pediatric patients. Pediatrics. 2006;117:1193–6.
5. Zou QH, Li QH, Zhu HY, Feng Y, Li YG, Johnston RN, et al. SPC-P1: a pathogenicity-associated prophage of Salmonella paratyphi C. BMC Genomics. 2010;11(1):729. https://doi.org/10.1186/1471-2164-11-729.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献