Author:
Rong Zherou,Chen Hongwei,Zhang Zihan,Zhang Yue,Ge Luanfeng,Lv Zhengyu,Zou Yuqing,Lv Junjie,He Yuehan,Li Wan,Chen Lina
Abstract
Abstract
Background
Cardiomyopathy is a complex type of myocardial disease, and its incidence has increased significantly in recent years. Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common and indistinguishable types of cardiomyopathy.
Results
Here, a systematic multi-omics integration approach was proposed to identify cardiomyopathy-related core genes that could distinguish normal, DCM and ICM samples using cardiomyopathy expression profile data based on a human metabolic network. First, according to the differentially expressed genes between different states (DCM/ICM and normal, or DCM and ICM) of samples, three sets of initial modules were obtained from the human metabolic network. Two permutation tests were used to evaluate the significance of the Pearson correlation coefficient difference score of the initial modules, and three candidate modules were screened out. Then, a cardiomyopathy risk module that was significantly related to DCM and ICM was determined according to the significance of the module score based on Markov random field. Finally, based on the shortest path between cardiomyopathy known genes, 13 core genes related to cardiomyopathy were identified. These core genes were enriched in pathways and functions significantly related to cardiomyopathy and could distinguish between samples of different states.
Conclusion
The identified core genes might serve as potential biomarkers of cardiomyopathy. This research will contribute to identifying potential biomarkers of cardiomyopathy and to distinguishing different types of cardiomyopathy.
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68(25):2871–86.
2. McKenna WJ, Maron BJ, Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circ Res. 2017;121(7):722–30.
3. Tompkins BA, Rieger AC, Florea V, Banerjee MN, Natsumeda M, Nigh ED, et al. Comparison of Mesenchymal stem cell efficacy in ischemic versus nonischemic dilated cardiomyopathy. J Am Heart Assoc. 2018;7(14):e008460.
4. Hare JM, Walford GD, Hruban RH, Hutchins GM, Deckers JW, Baughman KL. Ischemic cardiomyopathy: endomyocardial biopsy and ventriculographic evaluation of patients with congestive heart failure, dilated cardiomyopathy and coronary artery disease. J Am Coll Cardiol. 1992;20(6):1318–25.
5. Giraldo BF, Pericas MF, Schroeder R, Voss A. Respiratory sinus arrhythmia quantified with linear and non-linear techniques to classify dilated and ischemic cardiomyopathy. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:4860–3.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献