Abstract
Abstract
Background
Balanophoraceae plastomes are known for their highly condensed and re-arranged nature alongside the most extreme nucleotide compositional bias known to date, culminating in two independent reconfigurations of their genetic code. Currently, a large portion of the Balanophoraceae diversity remains unexplored, hindering, among others, evolutionary pattern recognition. Here, we explored newly sequenced plastomes of Sarcophyte sanguinea and Thonningia sanguinea. The reconstructed plastomes were analyzed using various methods of comparative genomics based on a representative taxon sampling.
Results
Sarcophyte, recovered sister to the other sampled Balanophoraceae s. str., has plastomes up to 50% larger than those currently published. Its gene set contains five genes lost in any other species, including matK. Five cis-spliced introns are maintained. In contrast, the Thonningia plastome is similarly reduced to published Balanophoraceae and retains only a single cis-spliced intron. Its protein-coding genes show a more biased codon usage compared to Sarcophyte, with an accumulation of in-frame TAG stop codons. Structural plastome comparison revealed multiple, previously unknown, structural rearrangements within Balanophoraceae.
Conclusions
For the “minimal plastomes” of Thonningia, we propose a genetic code change identical to sister genus Balanophora. Sarcophyte however differs drastically from our current understanding on Balanophoraceae plastomes. With a less-extreme nucleotide composition, there is no evidence for an altered genetic code. Using comparative genomics, we identified a hotspot for plastome reconfiguration in Balanophoraceae. Based on previously published and newly identified structural reconfigurations, we propose an updated model of evolutionary plastome trajectories for Balanophoraceae, illustrating a much greater plastome diversity than previously known.
Funder
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Su HJ, Barkman TJ, Hao W, Jones SS, Naumann J, Skippington E, Wafula EK, Hu JM, Palmer JD, dePamphilis CW. Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci. 2019;116(3):934–43. https://doi.org/10.1073/pnas.1816822116.
2. Chen X, Fang D, Wu C, Liu B, Liu Y, Sahu SK, Song B, Yang S, Yang T, Wei J, Wang X, Zhang W, Xu Q, Wang H, Yuan L, Liao X, Chen L, Chen Z, Yuan F, Chang Y, Lu L, Yang H, Wang J, Xu X, Liu X, Wicke S, Liu H. Comparative plastome analysis of root- and stem-feeding parasites of Santalales untangle the footprints of feeding mode and lifestyle transitions. Genome Biol Evol. 2020;12(1):3663–76. https://doi.org/10.1093/gbe/evz271.
3. Ceriotti LF, Roulet ME, Sanchez-Puerta MV. Plastomes in the holoparasitic family Balanophoraceae: extremely high AT content, severe gene content reduction, and two independent genetic code changes. Mol Phylogenet Evol. 2021;162:107208.
4. Yu R, Sun C, Zhong Y, Liu Y, Sanchez-Puerta MV, Mower JP, Zhou R. The minicircular and extremely heteroplasmic mitogenome of the holoparasitic plant Rhopalocnemis phalloides. Curr Biol. 2022;32(2):470-479.e5. https://doi.org/10.1016/j.cub.2021.11.053.
5. Hansen B. Balanophoraceae. Flora Neotropica; 1980;23:1-80.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献