A genome-wide landscape of mRNAs, lncRNAs, circRNAs and miRNAs during intramuscular adipogenesis in cattle

Author:

Yang Xinran,Ma Xinhao,Mei Chugang,Zan Linsen

Abstract

Abstract Background Intramuscular preadipocyte differentiation plays a critical role in bovine intramuscular fat (IMF) deposition. However, the roles of different RNAs, including mRNAs, circRNAs, lncRNAs and miRNAs, in regulating the adipogenic differentiation of intramuscular preadipocytes remain largely unclear. Results In the present study, a whole transcriptome sequencing and analysis, including the analysis of mRNAs, circRNAs, lncRNAs and miRNAs, during different differentiation stages (0, 3, 6, and 9 d) of intramuscular preadipocytes from Qinchuan cattle was performed. All samples were prepared with 3 biological replicates. Here, a total of 27,153 mRNAs, 14,070 circRNAs, 7035 lncRNAs, and 427 miRNAs were annotated. Among them, we identified 4848 differentially expressed mRNAs (DEMs), 181 DE circRNAs (DECs), 501 DE lncRNAs (DELs) and 77 DE miRNAs (DEmiRs) between 0 d and other differentiation days (3, 6, and 9 d). GO and KEGG functional enrichment analyses showed that these differentially expressed genes were mainly enriched in cell differentiation, fat metabolism and adipogenesis-related pathways. Furthermore, weighted gene coexpression network analysis (WGCNA) and co-expression network analysis screened out multiple important mRNAs, circRNAs and lncRNAs related to intramuscular adipogenesis. Based on the competing endogenous RNA (ceRNA) regulatory mechanism, we finally identified 24 potential ceRNA networks and 31 potential key genes, including FOXO1/miR-330/circRNA2018/MSTRG.20301, GPAM/miR-27b/ciRNA489 and SESN3/miR-433/circRNA2627MSTRG.20342. Conclusions This study provides new insights into the differential expression patterns of different transcript types (i.e., mRNAs, circRNAs, lncRNAs and miRNAs) in intramuscular preadipocyte differentiation. Our findings provide data support for studying the molecular mechanism of key mRNAs and noncoding RNAs in IMF deposition, and provide new candidate markers for the molecular breeding of beef cattle.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3