Effects of sustained hyperprolactinemia in late gestation on the mammary parenchymal tissue transcriptome of gilts

Author:

Palin Marie-FranceORCID,Caron Anouk,Farmer Chantal

Abstract

Abstract Background Gilts experiencing sustained hyperprolactinemia from d 90 to 109 of gestation showed an early onset of lactogenesis coupled with premature mammary involution. To better understand the molecular mechanisms underlying the premature mammary involution observed in these gilts, a transcriptomic analysis was undertaken. Therefore, this study aimed to explore the effect of hyperprolactinemia on the global transcriptome in the mammary tissue of late gestating gilts and identify the molecular pathways involved in triggering premature mammary involution. Methods On d 90 of gestation, gilts received daily injections of (1) canola oil until d 109 ± 1 of gestation (CTL, n = 18); (2) domperidone (to induce hyperprolactinemia) until d 96 ± 1 of gestation (T7, n = 17) or; (3) domperidone (until d 109 ± 1 of gestation (T20, n = 17). Mammary tissue was collected on d 110 of gestation and total RNA was isolated from six CTL and six T20 gilts for microarray analysis. The GeneChip® Porcine Gene 1.0 ST Array was used for hybridization. Functional enrichment analyses were performed to explore the biological significance of differentially expressed genes, using the DAVID bioinformatics resource. Results The expression of 335 genes was up-regulated and that of 505 genes down-regulated in the mammary tissue of T20 vs CTL gilts. Biological process GO terms and KEGG pathways enriched in T20 vs CTL gilts reflected the concurrent premature lactogenesis and mammary involution. When looking at individual genes, it appears that mammary cells from T20 gilts can simultaneously upregulate the transcription of milk proteins such as WAP, CSN1S2 and LALBA, and genes triggering mammary involution such as STAT3, OSMR and IL6R. The down-regulation of PRLR expression and up-regulation of genes known to inactivate the JAK-STAT5 pathway (CISH, PTPN6) suggest the presence of a negative feedback loop trying to counteract the effects of hyperprolactinemia. Conclusions Genes and pathways identified in this study suggest that sustained hyperprolactinemia during late-pregnancy, in the absence of suckling piglets, sends conflicting pro-survival and cell death signals to mammary epithelial cells. Reception of these signals results in a mammary gland that can simultaneously synthesize milk proteins and initiate mammary involution.

Funder

Agriculture and Agri-Food Canada

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3