Author:
Cheng Yujiao,Ren Yan,Wang Wenhui,Zhang Wangdong
Abstract
Abstract
Background
The presence of Aggregated Lymphoid Nodules Area (ALNA) is a notable anatomical characteristic observed in the abomasum of Bactrian camels. This area is comprised of two separate regions, namely the Reticular Mucosal Folds Region (RMFR) and the Longitudinal Mucosal Folds Region (LMFR). The histological properties of ALNA exhibit significant similarities to those of Peyer’s patches (PPs) found in the gastrointestinal system. The functional characteristics of ALNA were examined in relation to mucosal immunity in the gastrointestinal system.
Results
We used iTRAQ-based proteomic analysis on twelve Bactrian camels to measure the amount of proteins expressed in ALNA. In the experiment, we sampled the RMFR and LMFR separately from the ALNA and compared their proteomic quantification results with samples from the PPs. A total of 1253 proteins were identified, among which 39 differentially expressed proteins (DEPs) were found between RMFR and PPs, 33 DEPs were found between LMFR and PPs, and 22 DEPs were found between LMFR and RMFR. The proteins FLNA, MYH11, and HSPB1 were chosen for validation using the enzyme-linked immunosorbent assay (ELISA), and the observed expression profiles were found to be in agreement with the results obtained from the iTRAQ study. The InnateDB database was utilized to get data pertaining to immune-associated proteins in ALNA. It was observed that a significant proportion, specifically 76.6%, of these proteins were found to be associated with the same orthogroups as human immune-related genes. These proteins are acknowledged to be associated with a diverse range of functions, encompassing the uptake, processing and presentation of antigens, activation of lymphocytes, the signaling pathways of T-cell and B-cell receptors, and the control of actin polymerization.
Conclusions
The experimental results suggest that there are parallels in the immune-related proteins found in ALNA and PPs. Although there are variations in the structures of LMFR and RMFR, the proteins produced in both structures exhibit a high degree of similarity and perform comparable functions in the context of mucosal immune responses.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC