Abstract
Abstract
Background
Symbiosis is central to ecosystems and has been an important driving force of the diversity of life. Close and long-term interactions are known to develop cooperative molecular mechanisms between the symbiotic partners and have often given them new functions as symbiotic entities. In lichen symbiosis, mutualistic relationships between lichen-forming fungi and algae and/or cyanobacteria produce unique features that make lichens adaptive to a wide range of environments. Although the morphological, physiological, and ecological uniqueness of lichens has been described for more than a century, the genetic mechanisms underlying this symbiosis are still poorly known.
Results
This study investigated the fungal-algal interaction specific to the lichen symbiosis using Usnea hakonensis as a model system. The whole genome of U. hakonensis, the fungal partner, was sequenced by using a culture isolated from a natural lichen thallus. Isolated cultures of the fungal and the algal partners were co-cultured in vitro for 3 months, and thalli were successfully resynthesized as visible protrusions. Transcriptomes of resynthesized and natural thalli (symbiotic states) were compared to that of isolated cultures (non-symbiotic state). Sets of fungal and algal genes up-regulated in both symbiotic states were identified as symbiosis-related genes.
Conclusion
From predicted functions of these genes, we identified genetic association with two key features fundamental to the symbiotic lifestyle in lichens. The first is establishment of a fungal symbiotic interface: (a) modification of cell walls at fungal-algal contact sites; and (b) production of a hydrophobic layer that ensheaths fungal and algal cells;. The second is symbiosis-specific nutrient flow: (a) the algal supply of photosynthetic product to the fungus; and (b) the fungal supply of phosphorous and nitrogen compounds to the alga. Since both features are widespread among lichens, our result may indicate important facets of the genetic basis of the lichen symbiosis.
Funder
SOKENDAI, the Graduate University for Advanced Studies
Publisher
Springer Science and Business Media LLC
Reference98 articles.
1. Nash TH. Lichen biology. 2nd ed. United States of America: Cambridge University Press, New York; 2008.
2. Honegger R. The symbiotic phenotype of lichen-forming Ascomycetes and their Endo- and Epibionts. In: Hock B, editor. Fungal associations. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research). 2nd ed. Berlin, Heidelberg: Springer; 2012. p. 287–339.
3. Ahmadjian V. The lichen Symbiosis. New York: Wiley; 1993.
4. Aschenbrenner IA, Cernava T, Berg G, Grube M. Understanding microbial multi-species symbioses. Front Microbiol. 2016;7(180):180.
5. Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 2016;353(6298):488–92.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献