GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning

Author:

Cai Junzhe,Wang Ting,Deng Xi,Tang Lin,Liu Lin

Abstract

AbstractIn recent years, a large number of studies have shown that the subcellular localization of long non-coding RNAs (lncRNAs) can bring crucial information to the recognition of lncRNAs function. Therefore, it is of great significance to establish a computational method to accurately predict the subcellular localization of lncRNA. Previous prediction models are based on low-level sequences information and are troubled by the few samples problem. In this study, we propose a new prediction model, GM-lncLoc, which is based on the initial information extracted from the lncRNA sequence, and also combines the graph structure information to extract high level features of lncRNA. In addition, the training mode of meta-learning is introduced to obtain meta-parameters by training a series of tasks. With the meta-parameters, the final parameters of other similar tasks can be learned quickly, so as to solve the problem of few samples in lncRNA subcellular localization. Compared with the previous methods, GM-lncLoc achieved the best results with an accuracy of 93.4 and 94.2% in the benchmark datasets of 5 and 4 subcellular compartments, respectively. Furthermore, the prediction performance of GM-lncLoc was also better on the independent dataset. It shows the effectiveness and great potential of our proposed method for lncRNA subcellular localization prediction. The datasets and source code are freely available athttps://github.com/JunzheCai/GM-lncLoc.

Funder

National Natural Science Foundation of China

Applied Basic Research Key Project of Yunnan

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3