LRScaf: improving draft genomes using long noisy reads

Author:

Qin Mao,Wu Shigang,Li Alun,Zhao Fengli,Feng Hu,Ding Lulu,Ruan JueORCID

Abstract

Abstract Background The advent of third-generation sequencing (TGS) technologies opens the door to improve genome assembly. Long reads are promising for enhancing the quality of fragmented draft assemblies constructed from next-generation sequencing (NGS) technologies. To date, a few algorithms that are capable of improving draft assemblies have released. There are SSPACE-LongRead, OPERA-LG, SMIS, npScarf, DBG2OLC, Unicycler, and LINKS. Hybrid assembly on large genomes remains challenging, however. Results We develop a scalable and computationally efficient scaffolder, Long Reads Scaffolder (LRScaf, https://github.com/shingocat/lrscaf), that is capable of significantly boosting assembly contiguity using long reads. In this study, we summarise a comprehensive performance assessment for state-of-the-art scaffolders and LRScaf on seven organisms, i.e., E. coli, S. cerevisiae, A. thaliana, O. sativa, S. pennellii, Z. mays, and H. sapiens. LRScaf significantly improves the contiguity of draft assemblies, e.g., increasing the NGA50 value of CHM1 from 127.1 kbp to 9.4 Mbp using 20-fold coverage PacBio dataset and the NGA50 value of NA12878 from 115.3 kbp to 12.9 Mbp using 35-fold coverage Nanopore dataset. Besides, LRScaf generates the best contiguous NGA50 on A. thaliana, S. pennellii, Z. mays, and H. sapiens. Moreover, LRScaf has the shortest run time compared with other scaffolders, and the peak RAM of LRScaf remains practical for large genomes (e.g., 20.3 and 62.6 GB on CHM1 and NA12878, respectively). Conclusions The new algorithm, LRScaf, yields the best or, at least, moderate scaffold contiguity and accuracy in the shortest run time compared with other scaffolding algorithms. Furthermore, LRScaf provides a cost-effective way to improve contiguity of draft assemblies on large genomes.

Funder

The Dapeng New District Special Fund for Industrial Development

The National Key Research and Development Program of China

The National Natural Science Foundation of China

The Fundamental Research Funds for Central Non-profit Scientific Institution

The Fund of Key Laboratory of Shenzhen

The Agricultural Science and Technology Innovation Program

The Shenzhen Science and Technology Research Funding

The Key Forestry Public Welfare Project

The Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3