Abstract
Abstract
Background
The advent of third-generation sequencing (TGS) technologies opens the door to improve genome assembly. Long reads are promising for enhancing the quality of fragmented draft assemblies constructed from next-generation sequencing (NGS) technologies. To date, a few algorithms that are capable of improving draft assemblies have released. There are SSPACE-LongRead, OPERA-LG, SMIS, npScarf, DBG2OLC, Unicycler, and LINKS. Hybrid assembly on large genomes remains challenging, however.
Results
We develop a scalable and computationally efficient scaffolder, Long Reads Scaffolder (LRScaf, https://github.com/shingocat/lrscaf), that is capable of significantly boosting assembly contiguity using long reads. In this study, we summarise a comprehensive performance assessment for state-of-the-art scaffolders and LRScaf on seven organisms, i.e., E. coli, S. cerevisiae, A. thaliana, O. sativa, S. pennellii, Z. mays, and H. sapiens. LRScaf significantly improves the contiguity of draft assemblies, e.g., increasing the NGA50 value of CHM1 from 127.1 kbp to 9.4 Mbp using 20-fold coverage PacBio dataset and the NGA50 value of NA12878 from 115.3 kbp to 12.9 Mbp using 35-fold coverage Nanopore dataset. Besides, LRScaf generates the best contiguous NGA50 on A. thaliana, S. pennellii, Z. mays, and H. sapiens. Moreover, LRScaf has the shortest run time compared with other scaffolders, and the peak RAM of LRScaf remains practical for large genomes (e.g., 20.3 and 62.6 GB on CHM1 and NA12878, respectively).
Conclusions
The new algorithm, LRScaf, yields the best or, at least, moderate scaffold contiguity and accuracy in the shortest run time compared with other scaffolding algorithms. Furthermore, LRScaf provides a cost-effective way to improve contiguity of draft assemblies on large genomes.
Funder
The Dapeng New District Special Fund for Industrial Development
The National Key Research and Development Program of China
The National Natural Science Foundation of China
The Fundamental Research Funds for Central Non-profit Scientific Institution
The Fund of Key Laboratory of Shenzhen
The Agricultural Science and Technology Innovation Program
The Shenzhen Science and Technology Research Funding
The Key Forestry Public Welfare Project
The Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission
Publisher
Springer Science and Business Media LLC
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献