Abstract
Abstract
Background
Helicobacter himalayensis was isolated from Marmota himalayana in the Qinghai-Tibet Plateau, China, and is a new non-H. pylori species, with unclear taxonomy, phylogeny, and pathogenicity.
Results
A comparative genomic analysis was performed between the H. himalayensis type strain 80(YS1)T and other the genomes of Helicobacter species present in the National Center for Biotechnology Information (NCBI) database to explore the molecular evolution and potential pathogenicity of H. himalayensis. H. himalayensis 80(YS1)T formed a clade with H. cinaedi and H. hepaticus that was phylogenetically distant from H. pylori. The H. himalayensis genome showed extensive collinearity with H. hepaticus and H. cinaedi. However, it also revealed a low degree of genome collinearity with H. pylori. The genome of 80(YS1)T comprised 1,829,936 bp, with a 39.89% GC content, a predicted genomic island, and 1769 genes. Comparatively, H. himalayensis has more genes for functions in “cell wall/membrane/envelope biogenesis” and “coenzyme transport and metabolism” sub-branches than the other compared helicobacters, and its genome contained 42 virulence factors genes, including that encoding cytolethal distending toxin (CDT).
Conclusions
We characterized the H. himalayensis 80(YS1)T genome, its phylogenetic position, and its potential pathogenicity. However, further understanding of the pathogenesis of this potentially pathogenic bacterium is required, which might help to manage H. himalayensis-induced diseases.
Funder
Natural Science Foundation of Beijing Municipality
Young Scientists Fund
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献