Cloning and functional verification of a porcine adipose tissue-specific promoter

Author:

Zhang Dawei,Shen Liangcai,Wu Wenjing,Liu Keke,Zhang Jin

Abstract

Abstract Background Fat deposition is an important economic trait in pigs. In the past decades, many genes regulating porcine fat deposition were identified by Omics technology and verified by cell biology studies. Using genetically modified pigs to investigate the function of these genes in vivo is necessary before applying in breeding. However, lack of tissue-specific promoters of pigs hinders the generation of adipose tissue-specific genetically modified pigs. Results In order to identify a porcine adipose tissue-specific promoter, we used the software Digital Differential Display (DDD) to screen 99 genes highly expressed in porcine adipose tissue. GO and KEGG enrichment analysis indicated that the 99 genes were mainly related to lipid metabolism. Q-PCR proved that LGALS12 was an adipose tissue-specific gene. Five truncated fragments of the LGALS12 promoter were cloned and the 4 kb fragment (L-4 kb) exhibited a high level of promoter activity in adipocytes and no promoter activity in non-adipocytes. Following co-transfection with adipogenic transcription factors, the promoter activity of L-4 kb was enhanced by PPARγ, C/EBPβ, and KLF15, whereas it was suppressed by KLF4. Finally, we demonstrated that L-4 kb can drive APOR gene expression to exert its function in adipocytes. Conclusions This study demonstrates that porcine LGALS12 is an adipose tissue-specific gene, and identified the 4 kb fragment of LGALS12 promoter that exhibited adipocyte-specific promoter activity. These results provide new evidence for understanding porcine fat deposition and a promoter element for adipose tissue-specific genetic modification in pigs. Highlights Identified porcine LGALS12 as an adipose tissue-specific gene. Truncated LGALS12 promoter (L-4 kb) showed adipose tissue-specific promoter activity. Identified transcription factors involved in the regulation of L-4 kb promoter activity.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference27 articles.

1. Yang H, Wu Z. Genome editing of pigs for agriculture and biomedicine. Front Genet. 2018;9:360.

2. Nakajima O, Akiyama H, Teshima R. Study on recent status of development of genetically modified animals developed not for food purposes. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyujo hokoku=Bull Natl Institute Health Sci. 2012;1(130):50–57.

3. Zheng Q, Lin J, Huang J, Zhang H, Zhang R, Zhang X, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci U S A. 2017;114(45):E9474–e9482.

4. Chen MY, Tu CF, Huang SY, Lin JH, Lee WC. Augmentation of Thermotolerance in primary skin fibroblasts from a transgenic pig overexpressing the porcine HSP70.2. Asian Australas J Anim Sci. 2005;18(1):107–112.

5. Jing-Fen LI, Hao YU, Yuan Y, Liu D. Construction of MSTN Knock-out porcine fetal fibroblast. Sci Agric Sin. 2009;42(8):2972–7.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global advances in genomic editing in pig breeding;Siberian Herald of Agricultural Science;2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3