Author:
Wu Xiaozong,Cheng Changhe,Ma Rui,Xu Jianbo,Ma Congcong,Zhu Yutao,Ren Yanyan
Abstract
Abstract
Background
Basic leucine zipper (bZIP) protein is a plant-specific transcription factor involved in various biological processes, including light signaling, seed maturation, flower development, cell elongation, seed accumulation protein, and abiotic and biological stress responses. However, little is known about the pea bZIP family.
Results
In this study, we identified 87 bZIP genes in pea, named PsbZIP1 ~ PsbZIP87, via homology analysis using Arabidopsis. The genes were divided into 12 subfamilies and distributed unevenly in 7 pea chromosomes. PsbZIPs in the same subfamily contained similar intron/exon organization and motif composition. 1 tandem repeat event and 12 segmental duplication events regulated the expansion of the PsbZIP gene family. To better understand the evolution of the PsbZIP gene family, we conducted collinearity analysis using Arabidopsis thaliana, Oryza sativa Japonica, Fagopyrum tataricum, Solanum lycopersicum, Vitis vinifera, and Brachypodium distachyon as the related species of pea. In addition, interactions between PsbZIP proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of PsbZIP expression was complex. We also evaluated the expression patterns of bZIP genes in different tissues and at different fruit development stages, all while subjecting them to five hormonal treatments.
Conclusion
These results provide a deeper understanding of PsbZIP gene family evolution and resources for the molecular breeding of pea. The findings suggested that PsbZIP genes, specifically PSbZIP49, play key roles in the development of peas and their response to various hormones.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献