Abstract
Abstract
Background
Whole genome sequencing of cultured pathogens is the state of the art public health response for the bioinformatic source tracking of illness outbreaks. Quasimetagenomics can substantially reduce the amount of culturing needed before a high quality genome can be recovered. Highly accurate short read data is analyzed for single nucleotide polymorphisms and multi-locus sequence types to differentiate strains but cannot span many genomic repeats, resulting in highly fragmented assemblies. Long reads can span repeats, resulting in much more contiguous assemblies, but have lower accuracy than short reads.
Results
We evaluated the accuracy of Listeria monocytogenes assemblies from enrichments (quasimetagenomes) of naturally-contaminated ice cream using long read (Oxford Nanopore) and short read (Illumina) sequencing data. Accuracy of ten assembly approaches, over a range of sequencing depths, was evaluated by comparing sequence similarity of genes in assemblies to a complete reference genome. Long read assemblies reconstructed a circularized genome as well as a 71 kbp plasmid after 24 h of enrichment; however, high error rates prevented high fidelity gene assembly, even at 150X depth of coverage. Short read assemblies accurately reconstructed the core genes after 28 h of enrichment but produced highly fragmented genomes. Hybrid approaches demonstrated promising results but had biases based upon the initial assembly strategy. Short read assemblies scaffolded with long reads accurately assembled the core genes after just 24 h of enrichment, but were highly fragmented. Long read assemblies polished with short reads reconstructed a circularized genome and plasmid and assembled all the genes after 24 h enrichment but with less fidelity for the core genes than the short read assemblies.
Conclusion
The integration of long and short read sequencing of quasimetagenomes expedited the reconstruction of a high quality pathogen genome compared to either platform alone. A new and more complete level of information about genome structure, gene order and mobile elements can be added to the public health response by incorporating long read analyses with the standard short read WGS outbreak response.
Funder
U.S. Food and Drug Administration
University of Maryland
Publisher
Springer Science and Business Media LLC
Reference61 articles.
1. Allard MW, Strain E, Melka D, Bunning K, Musser SM, Brown EW, et al. Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J Clin Microbiol. 2016;54(8):1975–83. https://doi.org/10.1128/JCM.00081-16.
2. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV, the CDC PulseNet Task Force. PulseNet: The Molecular Subtyping Network for Foodborne Bacterial Disease Surveillance, United States. Emerging Infectious Diseases. 2001. pp. 382–389. https://doi.org/10.3201/eid0703.017303
3. Centers for Disease Control and Prevention (CDC). Establishment of a national surveillance program for antimicrobial resistance in Salmonella. MMWR Morb Mortal Wkly Rep. 1996;45:110–1.
4. Tollefson L. FDA reveals plans for antimicrobial susceptibility monitoring. J Am Vet Med Assoc. 1996;208(4):459–60.
5. Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A, Rand H, et al. CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Comput Sci. 2015:e20. https://doi.org/10.7717/peerj-cs.20.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献