Gene expression during the formation of resting spores induced by nitrogen starvation in the marine diatom Chaetoceros socialis

Author:

Pelusi Angela,Ambrosino Luca,Miralto Marco,Chiusano Maria Luisa,Rogato Alessandra,Ferrante Maria Immacolata,Montresor Marina

Abstract

Abstract Background Dormancy is widespread in both multicellular and unicellular organisms. Among diatoms, unicellular microalgae at the base of all aquatic food webs, several species produce dormant cells (spores or resting cells) that can withstand long periods of adverse environmental conditions. Results We present the first gene expression study during the process of spore formation induced by nitrogen depletion in the marine planktonic diatom Chaetoceros socialis. In this condition, genes related to photosynthesis and nitrate assimilation, including high-affinity nitrate transporters (NTRs), were downregulated. While the former result is a common reaction among diatoms under nitrogen stress, the latter seems to be exclusive of the spore-former C. socialis. The upregulation of catabolic pathways, such as tricarboxylic acid cycle, glyoxylate cycle and fatty acid beta-oxidation, suggests that this diatom could use lipids as a source of energy during the process of spore formation. Furthermore, the upregulation of a lipoxygenase and several aldehyde dehydrogenases (ALDHs) advocates the presence of oxylipin-mediated signaling, while the upregulation of genes involved in dormancy-related pathways conserved in other organisms (e.g. serine/threonine-protein kinases TOR and its inhibitor GATOR) provides interesting avenues for future explorations. Conclusions Our results demonstrate that the transition from an active growth phase to a resting one is characterized by marked metabolic changes and provides evidence for the presence of signaling pathways related to intercellular communication.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3