Functional analysis of differentially expressed circular RNAs in sheep subcutaneous fat

Author:

Liu Tian-yi,Feng Hui,Yousuf Salsabeel,Xie Ling-li,Miao Xiang-yang

Abstract

Abstract Background Circular RNAs (circRNAs), as important non-coding RNAs (ncRNAs), are involved in many biological activities. However, the exact chemical mechanism behind fat accumulation is unknown. In this paper, we obtained the expression profiles of circRNAs using high-throughput sequencing and investigated their differential expression in subcutaneous fat tissue of Duolang and Small Tail Han sheep. Results From the transcriptomic analysis, 141 differentially expressed circRNAs were identified, comprising 61 up-regulated circRNAs and 80 down-regulated circRNAs. These host genes were primarily enriched in the MAPK and AMPK signaling pathways which is closely associated with fat deposition regulation. We identified circRNA812, circRNA91, and circRNA388 as vital genes in fat deposition by miRNA-circRNA target gene prediction. The functional annotation results of target genes of key circRNAs showed that the signaling pathways mainly included PI3K-Akt and AMPK. We constructed the competing endogenous RNA (ceRNA) regulatory network to study the role of circRNAs in sheep lipid deposition, and circRNA812, circRNA91, and circRNA388 can adsorb more miRNAs. NC_040253.1_5757, as the source of miRNA response element (MRE) among the three, may play an important role during the process of sheep fat deposition. Conclusions Our study gives a systematic examination of the circRNA profiles expressed in sheep subcutaneous fat. These results from this study provide some new basis for understanding circRNA function and sheep fat metabolism.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3