Improved wild horse optimization with levy flight algorithm for effective task scheduling in cloud computing

Author:

Saravanan G.,Neelakandan S.,Ezhumalai P.,Maurya Sudhanshu

Abstract

AbstractCloud Computing, the efficiency of task scheduling is proportional to the effectiveness of users. The improved scheduling efficiency algorithm (also known as the improved Wild Horse Optimization, or IWHO) is proposed to address the problems of lengthy scheduling time, high-cost consumption, and high virtual machine load in cloud computing task scheduling. First, a cloud computing task scheduling and distribution model is built, with time, cost, and virtual machines as the primary factors. Second, a feasible plan for each whale individual corresponding to cloud computing task scheduling is to find the best whale individual, which is the best feasible plan; to better find the optimal individual, we use the inertial weight strategy for the Improved whale optimization algorithm to improve the local search ability and effectively prevent the algorithm from reaching premature convergence. To deliver services and access to shared resources, Cloud Computing (CC) employs a cloud service provider (CSP). In a CC context, task scheduling has a significant impact on resource utilization and overall system performance. It is a Nondeterministic Polynomial (NP)-hard problem that is solved using metaheuristic optimization techniques to improve the effectiveness of job scheduling in a CC environment. This incentive is used in this study to provide the Improved Wild Horse Optimization with Levy Flight Algorithm for Task Scheduling in cloud computing (IWHOLF-TSC) approach, which is an improved wild horse optimization with levy flight algorithm for cloud task scheduling. Task scheduling can be addressed in the cloud computing environment by utilizing some form of symmetry, which can achieve better resource optimization, such as load balancing and energy efficiency. The proposed IWHOLF-TSC technique constructs a multi-objective fitness function by reducing Makespan and maximizing resource utilization in the CC platform. The IWHOLF-TSC technique proposed combines the wild horse optimization (WHO) algorithm and the Levy flight theory (LF). The WHO algorithm is inspired by the social behaviours of wild horses. The IWHOLF-TSC approach's performance can be validated, and the results evaluated using a variety of methods. The simulation results revealed that the IWHOLF-TSC technique outperformed others in a variety of situations.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3