An integrated SDN framework for early detection of DDoS attacks in cloud computing

Author:

Songa Asha Varma,Karri Ganesh Reddy

Abstract

AbstractCloud computing is a rapidly advancing technology with numerous benefits, such as increased availability, scalability, and flexibility. Relocating computing infrastructure to a network simplifies hardware and software resource monitoring in the cloud. Software-Defined Networking (SDN)-based cloud networking improves cloud infrastructure efficiency by dynamically allocating and utilizing network resources. While SDN cloud networks offer numerous advantages, they are vulnerable to Distributed Denial-of-Service (DDoS) attacks. DDoS attacks try to stop genuine users from using services and drain network resources to reduce performance or shut down services. However, early-stage detection of DDoS attack patterns in cloud environments remains challenging. Current methods detect DDoS at the SDN controller level, which is often time-consuming. We recommend focusing on SDN switches for early detection. Due to the large volume of data from diverse sources, we recommend traffic clustering and traffic anomalies prediction which is of DDoS attacks at each switch. Furthermore, to consolidate the data from multiple clusters, event correlation is performed to understand network behavior and detect coordinated attack activities. Many existing techniques stay behind for early detection and integration of multiple techniques to detect DDoS attack patterns. In this paper, we introduce a more efficient and effectively integrated SDN framework that addresses a gap in previous DDoS solutions. Our framework enables early and accurate detection of DDoS traffic patterns within SDN-based cloud environments. In this framework, we use Recursive Feature Elimination (RFE), Density Based Spatial Clustering (DBSCAN), time series techniques like Auto Regressive Integrated Moving Average (ARIMA), Lyapunov exponent, exponential smoothing filter, dynamic threshold, and lastly, Rule-based classifier. We have evaluated the proposed RDAER model on the CICDDoS 2019 dataset, that achieved an accuracy level of 99.92% and a fast detection time of 20 s, outperforming existing methods.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3