Multiobjective trajectory optimization algorithms for solving multi-UAV-assisted mobile edge computing problem

Author:

Abdel-Basset Mohamed,Mohamed Reda,Hezam Ibrahim M.,Sallam Karam M.,Foul Abdelaziz,Hameed Ibrahim A.

Abstract

AbstractThe Internet of Things (IoT) devices are not able to execute resource-intensive tasks due to their limited storage and computing power. Therefore, Mobile edge computing (MEC) technology has recently been utilized to provide computing and storage capabilities to those devices, enabling them to execute these tasks with less energy consumption and low latency. However, the edge servers in the MEC network are located at fixed positions, which makes them unable to be adjusted according to the requirements of end users. As a result, unmanned aerial vehicles (UAVs) have recently been used to carry the load of these edge servers, making them mobile and capable of meeting the desired requirements for IoT devices. However, the trajectories of the UAVs need to be accurately planned in order to minimize energy consumption for both the IoT devices during data transmission and the UAVs during hovering time and mobility between halting points (HPs). The trajectory planning problem is a complicated optimization problem because it involves several factors that need to be taken into consideration. This problem is considered a multiobjective optimization problem since it requires simultaneous optimization of both the energy consumption of UAVs and that of IoT devices. However, existing algorithms in the literature for this problem have been based on converting it into a single objective, which may give preference to some objectives over others. Therefore, in this study, several multiobjective trajectory planning algorithms (MTPAs) based on various metaheuristic algorithms with variable population size and the Pareto optimality theory are presented. These algorithms aim to optimize both objectives simultaneously. Additionally, a novel mechanism called the cyclic selection mechanism (CSM) is proposed to manage the population size accurately, optimizing the number of HPs and the maximum function evaluations. Furthermore, the HPs estimated by each MTPA are associated with multiple UAVs using the k-means clustering algorithm. Then, a low-complexity greedy mechanism is used to generate the order of HPs assigned to each UAV, determining its trajectory. Several experiments are conducted to assess the effectiveness of the MTPAs with variable population size and cyclic selection mechanisms. The experimental findings demonstrate that the MTPAs with the cyclic selection mechanism outperform all competing algorithms, achieving better outcomes.

Funder

King Saud University

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3