Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography

Author:

Lu Minhua,Zhang Heye,Wang Jun,Yuan Jinwei,Hu Zhenghui,Liu Huafeng

Abstract

Abstract Background The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. Methods In this study we propose a reconstruction strategy to recover the mechanical properties of the tissue. After the discrepancies between the biomechanical model and data are modeled as the process noise, and the biomechanical model constraint is transformed into a state space representation the reconstruction of elasticity can be accomplished through one filtering identification process, which is to recursively estimate the material properties and kinematic functions from ultrasound data according to the minimum mean square error (MMSE) criteria. In the implementation of this model-based algorithm, the linear isotropic elasticity is adopted as the biomechanical constraint. The estimation of kinematic functions (i.e., the full displacement and velocity field), and the distribution of Young’s modulus are computed simultaneously through an extended Kalman filter (EKF). Results In the following experiments the accuracy and robustness of this filtering framework is first evaluated on synthetic data in controlled conditions, and the performance of this framework is then evaluated in the real data collected from elastography phantom and patients using the ultrasound system. Quantitative analysis verifies that strain fields estimated by our filtering strategy are more closer to the ground truth. The distribution of Young’s modulus is also well estimated. Further, the effects of measurement noise and process noise have been investigated as well. Conclusions The advantage of this model-based algorithm over the conventional strain-based algorithm is its potential of providing the distribution of elasticity under a proper biomechanical model constraint. We address the model-data discrepancy and measurement noise by introducing process noise and measurement noise in our framework, and then the absolute values of Young’s modulus are estimated through the EFK in the MMSE sense. However, the initial conditions, and the mesh strategy will affect the performance, i.e., the convergence rate, and computational cost, etc.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3