Predictive value of CT and 18F-FDG PET/CT features on spread through air space in lung adenocarcinoma

Author:

Li Haijun,Li Lifeng,Liu Yumeng,Deng Yingke,Zhu Yu,Huang Ling,Long Ting,Zeng Li,Shu Yongqiang,Peng Dechang

Abstract

Abstract Background Lung adenocarcinoma, a leading cause of cancer-related mortality, demands precise prognostic indicators for effective management. The presence of spread through air space (STAS) indicates adverse tumor behavior. However, comparative differences between 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography(PET)/computed tomography(CT) and CT in predicting STAS in lung adenocarcinoma remain inadequately explored. This retrospective study analyzes preoperative CT and 18F-FDG PET/CT features to predict STAS, aiming to identify key predictive factors and enhance clinical decision-making. Methods Between February 2022 and April 2023, 100 patients (108 lesions) who underwent surgery for clinical lung adenocarcinoma were enrolled. All these patients underwent 18F-FDG PET/CT, thin-section chest CT scan, and pathological biopsy. Univariate and multivariate logistic regression was used to analyze CT and 18F-FDG PET/CT image characteristics. Receiver operating characteristic curve analysis was performed to identify a cut-off value. Results Sixty lesions were positive for STAS, and 48 lesions were negative for STAS. The STAS-positive was frequently observed in acinar predominant. However, STAS-negative was frequently observed in minimally invasive adenocarcinoma. Univariable analysis results revealed that CT features (including nodule type, maximum tumor diameter, maximum solid component diameter, consolidation tumor ratio, pleural indentation, lobulation, spiculation) and all 18F-FDG PET/CT characteristics were statistically significant difference in STAS-positive and STAS-negative lesions. And multivariate logistic regression results showed that the maximum tumor diameter and SUVmax were the independent influencing factors of CT and 18F-FDG PET/CT in STAS, respectively. The area under the curve of maximum tumor diameter and SUVmax was 0.68 vs. 0.82. The cut-off value for maximum tumor diameter and SUVmax was 2.35 vs. 5.05 with a sensitivity of 50.0% vs. 68.3% and specificity of 81.2% vs. 87.5%, which showed that SUVmax was superior to the maximum tumor diameter. Conclusion The radiological features of SUVmax is the best model for predicting STAS in lung adenocarcinoma. These radiological features could predict STAS with excellent specificity but inferior sensitivity.

Funder

Natural Science Foundation Project of Jiangxi

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3