MicroRNA-21 promotes head and neck squamous cell carcinoma (HNSCC) induced transition of bone marrow mesenchymal stem cells to cancer-associated fibroblasts

Author:

Wang Hao,Zhou Zhengyu,Lin Wenchao,Qian Yechun,He Shifang,Wang Jun

Abstract

Abstract Background Most patients diagnosed with head and neck tumor will present with locally advanced disease, requiring multimodality therapy. Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. We aimed to determine whether microRNA-21(miR-21) would play a vital role in HNSCC induced transition of human bone marrow mesenchymal stem cells (hBMSCs) to cancer-associated fibroblasts (CAFs). Methods In this study, we used electron microscope to observed exosomes collected from human tissue and two cell lines. We co-cultured hBMSCs with exosomes from FaDu and Cal-27 cells with miR-21 inhibited or not, then assessed cell cycle changes of hBMSCs with flow cytometry and determined expression level of α-SMA and FAP through qRT-PCR and Western blot. Results We observed an up-regulation of miR-21 expression in HNSCC tissue and FaDu and Cal-27 cells. Importantly, the exosomes derived from both cells induced CAFs-like characteristics in hBMSCs. while treatment with a miR-21 inhibitor effectively suppressed the transition of hBMSCs to CAFs and reversed the changes in the cell cycle distribution. This suggests that miR-21 plays a crucial role in facilitating the transition of hBMSCs to CAFs and modulating the cell cycle dynamics. Conclusion Our findings highlight the significance of miR-21 in mediating the communication between HNSCC cells and hBMSCs through exosomes, leading to the promotion of CAFs-like features and alterations in the cell cycle of hBMSCs.

Funder

Scientific Research Project of Health and Family Planning Commission of Huangpu District, Shanghai, China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3