CD248 promotes migration and metastasis of osteosarcoma through ITGB1-mediated FAK-paxillin pathway activation

Author:

Lu Shiqi,Lu Tong,Zhang Jiayu,Gan Lunbiao,Wu Xinjie,Han Donghui,Zhang Keying,Xu Chao,Liu Shaojie,Qin Weijun,Yang Fa,Wen Weihong

Abstract

Abstract Background Osteosarcoma (OS) is the most common malignant bone tumor with a high incidence in children and adolescents. Frequent tumor metastasis and high postoperative recurrence are the most common challenges in OS. However, detailed mechanism is largely unknown. Methods We examined the expression of CD248 in OS tissue microarrays by immunohistochemistry (IHC) staining. We studied the biological function of CD248 in cell proliferation, invasion and migration of OS cells by CCK8 assay, transwell and wound healing assay. We also studied its function in the metastasis of OS in vivo. At last, we explored the potential mechanism how CD248 promotes OS metastasis by using RNA-seq, western blot, immunofluorescence staining and co-immunoprecipitation using CD248 knockdown OS cells. Results CD248 was highly expressed in OS tissues and its high expression was correlated with pulmonary metastasis of OS. Knockdown of CD248 in OS cells significantly inhibited cell migration, invasion and metastasis, while had no obvious effect on cell proliferation. Lung metastasis in nude mice was significantly inhibited when CD248 was knocked down. Mechanistically, we found that CD248 could promote the interaction between ITGB1 and extracellular matrix (ECM) proteins like CYR61 and FN, which activated the FAK-paxillin pathway to promote the formation of focal adhesion and metastasis of OS. Conclusion Our data showed that high CD248 expression is correlated with the metastatic potential of OS. CD248 may promote migration and metastasis through enhancing the interaction between ITGB1 and certain ECM proteins. Therefore, CD248 is a potential marker for diagnosis and effective target for the treatment of metastatic OS.

Funder

National Natural Science Foundation of China

Innovation Capability Support Program of Shaanxi

Natural Science Basic Research Program of Shaanxi

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3