Author:
Wang Qiming,Chen Shaopeng,Wang Gang,Zhang Tielong,Gao Yulong
Abstract
Abstract
Backgrounds
A growing number of expression quantitative trait loci (eQTLs) have been found to be linked with tumorigenesis. In this article, we employed integrated Mendelian randomization (MR) analyses to identify novel susceptibility genes in renal cancer (RC) and reveal their potential mechanisms.
Methods
Two-sample MR analyses were performed to infer causal relationships between eQTLs, metabolites, and RC risks through the “TwoSampleMR” R package. Sensitivity analyses, such as heterogeneity, pleiotropy, and leave-one-out analysis, were used to assess the stability of our outcomes. Summary-data-based MR (SMR) analyses were used to verify the causal relationships among cis-eQTLs and RC risks via the SMR 1.3.1 software.
Results
Our results provided the first evidence for AFF3 eQTL elevating RC risks, suggesting its oncogenic roles (IVW method; odds ratio (OR) = 1.0005; 95% confidence interval (CI) = 1.0001–1.0010; P = 0.0285; heterogeneity = 0.9588; pleiotropy = 0.8397). Further SMR analysis validated the causal relationships among AFF3 cis-eQTLs and RC risks (P < 0.05). Moreover, the TCGA-KIRC, the ICGC-RC, and the GSE159115 datasets verified that the AFF3 gene was more highly expressed in RC tumors than normal control via scRNA-sequencing and bulk RNA-sequencing (P < 0.05). Gene set enrichment analysis (GSEA) analysis identified six potential biological pathways of AFF3 involved in RC. As for the potential mechanism of AFF3 in RC, we concluded in this article that AFF3 eQTL could negatively modulate the levels of the X-11,315 metabolite (IVW method; OR = 0.9127; 95% CI = 0.8530–0.9765; P = 0.0081; heterogeneity = 0.4150; pleiotropy = 0.8852), exhibiting preventive effects against RC risks (IVW method; OR = 0.9987; 95% CI = 0.9975–0.9999; P = 0.0380; heterogeneity = 0.5362; pleiotropy = 0.9808).
Conclusions
We concluded that AFF3 could serve as a novel eQTL-mediated susceptibility gene in RC and reveal its potential mechanism of elevating RC risks via negatively regulating the X-11,315 metabolite levels.
Publisher
Springer Science and Business Media LLC