Author:
Tange Shoichiro,Hirano Tomomi,Idogawa Masashi,Hirata Eishu,Imoto Issei,Tokino Takashi
Abstract
Abstract
Background
While molecular targeted drugs and other therapies are being developed for many tumors, pancreatic cancer is still considered to be the malignant tumor with the worst prognosis. We started this study to identify prognostic genes and therapeutic targets of pancreatic cancer.
Methods
To comprehensively identify prognostic genes in pancreatic cancer, we investigated the correlation between gene expression and cancer-specific prognosis using transcriptome and clinical information datasets from The Cancer Genome Atlas (TCGA). In addition, we examined the effects of the suppression of candidate prognostic genes in pancreatic cancer cell lines.
Result
We found that patients with high expression levels of MYEOV, a primate-specific gene with unknown function, had significantly shorter disease-specific survival times than those with low expression levels. Cox proportional hazards analysis revealed that high expression of MYEOV was significantly associated with poor survival and was an independent prognostic factor for disease-specific survival in pancreatic cancer patients. Analysis of multiple cancer samples revealed that the MYEOV promoter region is methylated in noncancer tissues but is demethylated in tumors, causing MYEOV overexpression in tumors. Notably, the knockdown of MYEOV suppressed the expression of MTHFD2 and other folate metabolism-related enzyme genes required for the synthesis of amino acids and nucleic acids and also restored the expression of c-Myc and mTORC1 repressors.
Conclusion
There is a significant correlation between elevated MYEOV expression and poor disease-specific survival in pancreatic cancer patients. MYEOV enhances the activation of several oncogenic pathways, resulting in the induction of pancreatic cancer cell proliferation. Overall, MYEOV acts as an oncogene in pancreatic cancer. Furthermore, MYEOV may be a prognostic biomarker and serve as an ‘actionable’ therapeutic target for pancreatic cancers.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference31 articles.
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.
2. Idogawa M, Nakase H, Sasaki Y, Tokino T. Prognostic effect of long noncoding RNA NEAT1 expression depends on p53 mutation status in Cancer. J Oncol. 2019;2019:4368068.
3. Suzuki N, Idogawa M, Tange S, Ohashi T, Sasaki Y, Nakase H, et al. p53-induced ARVCF modulates the splicing landscape and supports the tumor suppressive function of p53. Oncogene. 2019;39:2202–11.
4. Janssen JW, Vaandrager JW, Heuser T, Jauch A, Kluin PM, Geelen E, et al. Concurrent activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple myeloma cell lines with t(11;14)(q13;q32). Blood. 2000;95:2691–8.
5. Janssen JW, Cuny M, Orsetti B, Rodriguez C, Vallés H, Bartram CR, et al. MYEOV: a candidate gene for DNA amplification events occurring centromeric to CCND1 in breast cancer. Int J Cancer. 2002;102:608–14.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献