Ultrasound-based radiomics machine learning models for diagnosing cervical lymph node metastasis in patients with non-small cell lung cancer: a multicentre study

Author:

Deng Zhiqiang,Liu Xiaoling,Wu Renmei,Yan Haoji,Gou Lingyun,Hu Wenlong,Wan Jiaxin,Song Chenwanqiu,Chen Jing,Ma Daiyuan,Zhou Haining,Tian Dong

Abstract

Abstract Background Cervical lymph node metastasis (LNM) is an important prognostic factor for patients with non-small cell lung cancer (NSCLC). We aimed to develop and validate machine learning models that use ultrasound radiomic and descriptive semantic features to diagnose cervical LNM in patients with NSCLC. Methods This study included NSCLC patients who underwent neck ultrasound examination followed by cervical lymph node (LN) biopsy between January 2019 and January 2022 from three institutes. Radiomic features were extracted from the ultrasound images at the maximum cross-sectional areas of cervical LNs. Logistic regression (LR) and random forest (RF) models were developed. Model performance was assessed by the area under the curve (AUC) and accuracy, validated internally and externally by fivefold cross-validation and hold-out method, respectively. Results In total, 313 patients with a median age of 64 years were included, and 276 (88.18%) had cervical LNM. Three descriptive semantic features, including long diameter, shape, and corticomedullary boundary, were selected by multivariate analysis. Out of the 474 identified radiomic features, 9 were determined to fit the LR model, while 15 fit the RF model. The average AUCs of the semantic and radiomics models were 0.876 (range: 0.781–0.961) and 0.883 (range: 0.798–0.966), respectively. However, the average AUC was higher for the semantic-radiomics combined LR model (0.901; range: 0.862–0.927). When the RF algorithm was applied, the average AUCs of the radiomics and semantic-radiomics combined models were improved to 0.908 (range: 0.837–0.966) and 0.922 (range: 0.872–0.982), respectively. The models tested by the hold-out method had similar results, with the semantic-radiomics combined RF model achieving the highest AUC value of 0.901 (95% CI, 0.886–0.968). Conclusions The ultrasound radiomic models showed potential for accurately diagnosing cervical LNM in patients with NSCLC when integrated with descriptive semantic features. The RF model outperformed the conventional LR model in diagnosing cervical LNM in NSCLC patients.

Funder

The College Students' Innovative Entrepreneurial Training Plan Program in Sichuan Province

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3