Abstract
Abstract
Background
Neighborhood exposure to asbestos increases the risk of developing malignant mesothelioma (MM) in residents who live near asbestos mines and asbestos product plants. The area of Casale Monferrato (Northwest Italy) was impacted by several sources of asbestos environmental pollution, due to the presence of the largest Italian asbestos cement (AC) plant. In the present study, we examined the spatial variation of MM risk in an area with high levels of asbestos pollution and secondly, and we explored the pattern of clustering.
Methods
A population-based case–control study conducted between 2001 and 2006 included 200 cases and 348 controls. Demographic and occupational data along with residential information were recorded. Bivariate Kernel density estimation was used to map spatial variation in disease risk while an adjusted logistic model was applied to estimate the impact of residential distance from the AC plant. Kulldorf test and Cuzick Edward test were then performed.
Results
One hundred ninety-six cases and 322 controls were included in the analyses. The contour plot of the cases to controls ratio showed a well-defined peak of MM incidence near the AC factory, and the risk decreased monotonically in all directions when large bandwidths were used. However, considering narrower smoothing parameters, several peaks of increased risk were reported. A constant trend of decreasing OR with increasing distance was observed, with estimates of 10.9 (95% CI 5.32–22.38) and 10.48 (95%CI 4.54–24.2) for 0–5 km and 5–10 km, respectively (reference > 15 km). Finally, a significant (p < 0.0001) excess of cases near the pollution source was identified and cases are spatially clustered relative to the controls until 13 nearest neighbors.
Conclusions
In this study, we found an increasing pattern of mesothelioma risk in the area around a big AC factory and we detected secondary clusters of cases due to local exposure points, possibly associated to the use of asbestos materials.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference39 articles.
1. IARC (International Agency for Cancer Research). A review of human carcinogens: arsenic, metals, fibres, and dusts. ARC Monogr Eval Carcinog Risks Hum C. 2012;100:169–211.
2. Hodgson JT, Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg. 2000;44(8):565–601. https://doi.org/10.1016/S0003-4878(00)00045-410.1093/annhyg/44.8.565. PMID: 11108782.
3. Magnani C, Fubini B, Mirabelli D, Bertazzi PA, Bianchi C, Chellini E, Gennaro V, Marinaccio A, Menegozzo M, Merler E, Merletti F, Musti M, Pira E, Romanelli A, Terracini B, Zona A. Pleural mesothelioma: epidemiological and public health issues. Report from the second italian consensus conference on pleural mesothelioma. Med Lav. 2013;104(3):191–202. PMID: 23879063.
4. Goswami E, Craven V, Dahlstrom DL, Alexander D, Mowat F. Domestic asbestos exposure: a review of epidemiologic and exposure data. Int J Environ Res Public Health. 2013;10(11):5629–70. https://doi.org/10.3390/ijerph10115629. PMID: 24185840.
5. Xu R, Barg FK, Emmett EA, Wiebe DJ, Hwang WT. Association between mesothelioma and non-occupational asbestos exposure: systematic review and meta-analysis. Environ Health. 2018;17(1):90. https://doi.org/10.1186/s12940-018-0431-9. PMID: 30567579.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献