The impact of energy retrofits on pediatric asthma exacerbation in a Boston multi-family housing complex: a systems science approach

Author:

Tieskens Koen F.ORCID,Milando Chad W.,Underhill Lindsay J.,Vermeer Kimberly,Levy Jonathan I.,Fabian M. Patricia

Abstract

Abstract Background Pediatric asthma is currently the most prevalent chronic disease in the United States, with children in lower income families disproportionately affected. This increased health burden is partly due to lower-quality and insufficient maintenance of affordable housing. A movement towards ‘green’ retrofits that improve energy efficiency and increase ventilation in existing affordable housing offers an opportunity to provide cost-effective interventions that can address these health disparities. Methods We combine indoor air quality modeling with a previously developed discrete event model for pediatric asthma exacerbation to simulate the effects of different types of energy retrofits implemented at an affordable housing site in Boston, MA. Results Simulation results show that retrofits lead to overall better health outcomes and healthcare cost savings if reduced air exchange due to energy-saving air tightening is compensated by mechanical ventilation. Especially when exposed to indoor tobacco smoke and intensive gas-stove cooking such retrofit would lead to an average annual cost saving of over USD 200, while without mechanical ventilation the same children would have experienced an increase of almost USD 200/year in health care utilization cost. Conclusion The combination of indoor air quality modeling and discrete event modeling applied in this paper can allow for the inclusion of health impacts in cost-benefit analyses of proposed affordable housing energy retrofits.

Funder

U. S. Department of Housing and Urban Development

National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3