Biomechanical analysis of lifting on stable versus unstable surfaces—a laboratory-based proof-of-concept study

Author:

Grooten Wilhelmus Johannes AndreasORCID,Billsten Edwin,von Stedingk Sebastian,Reimeringer Mikael

Abstract

Abstract Background Many workers performing manual handling tasks suffer from musculoskeletal disorders (MSD). Previous research has identified several loading aspects associated with manual handling, but it is still unknown if lifting on an unstable surface is associated with increased biomechanical loading of different body parts. Aim This proof-of-concept study aims to study what kinematic and kinetic movement parameters, such as movement time, joint angles, torque, and muscle activity are feasible and of importance when studying the effect of lifting on surfaces with varying degrees of stability in an experimental set-up. Methods Measurements were taken during three different surface conditions: stable, slightly unstable, and unstable. The participants were instructed to lift a box from the floor and place it on a table in front of them. The weight of the box varied from 0.5 to 15.5 kg. By using a motion capture system (VICON) with 28 reflective markers placed on the participants and one on the box, one Kistler force plate for measuring force levels and center of pressure movements (CoP), and four electromyographic transmitters (EMG), we analyzed the downward and upward phases of the lifting movement, using the Friedman’s test for repeated measures. Results Statistically significant results with less joint movements in the lower and upper back were seen with increased instability during both the downward and upward phases. The decrease in trunk movements with increased instability resulted in a somewhat more flexed knee position during the movement, a lower torque in the lower back, and a decrease in CoP movements, but no differences in movement time or muscle activity in back and knee muscles. Conclusion Lifting while standing on unstable surfaces resulted in an alteration of both kinematics and kinetics parameters; however, further studies regarding whether this is an additional risk factor for developing lower back pain are needed. Muscle activity levels were not altered due to instability and due to the complexity of the measurement, and we suggest not including EMG measures in future experiments of this type.

Funder

uMove

Karolinska Institute

Publisher

Springer Science and Business Media LLC

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3